首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The purpose of this investigation was to evaluate the effect of passive smoke inhalation on submaximal and maximal exercise performance. Eight female subjects ran on a motor driven treadmill for 20 min at 70% VO2max followed by an incremental change in grade until maximal work capacity was obtained. Each subject completed the exercise trial with and without the presence of residual cigarette smoke. Compared to the smokeless trials, the passive inhalation of smoke significantly reduced maximal oxygen uptake by 0.25 l X min-1 and time to exhaustion by 2.1 min. The presence of sidestream smoke also elevated maximal R value (1.01 vs 0.93), maximal blood lactate (6.8 vs 5.5 mM), and ratings of perceived exertion (17.4 vs 16.5 units). Passive inhalation of smoke during submaximal exercise significantly elevated the CO2 output (1.68 vs 1.58 l X min-1), R values (0.91 vs 0.86), heart rate (178 vs 172 bts X min-1) and rating of perceived exertion (13.8 vs 11.8 units). These findings suggest that passive inhalation of sidestream smoke adversely affects exercise performance.  相似文献   

5.
To determine the acute action of cigarette smoking on cardiorespiratory function under stress, the immediate effects of cigarette smoking on the ventilatory, gas exchange, and cardiovascular responses to exercise were studied in nine healthy male subjects. Each subject performed an incremental exercise test to exhaustion on two separate days, one without smoking (control) and one after smoking 3 cigarettes/h for 5 h. The order of the two tests was randomized. Arterial blood gases and pH were measured during rest and all levels of exercise; CO blood levels confirmed the absorption of cigarette smoke. In addition, minute ventilation (VE), end-tidal PCO2 and PO2, O2 uptake (VO2), CO2 production, directly measured blood pressure, electrocardiogram, and heart rate (HR) were recorded every 30 s. The dead space-to-tidal volume ratio (VD/VT), maximal aerobic capacity (VO2max), and anaerobic threshold (AT) were determined from the gas exchange data. Cigarette smoking resulted in a significantly lower VO2max, AT, and VO2/HR (O2 pulse) and a significantly higher HR, pulse-pressure product, and pulse pressure (P less than 0.05) compared with the control. Additionally, a trend toward a higher VD/VT and arterial-end-tidal PCO2 difference was found during exercise after smoking. We conclude that cigarette smoking causes immediate detrimental effects on cardiovascular function during exercise, including tachycardia, increased pulse-pressure product, and impaired O2 delivery. The acute effects on respiratory function were less striking and primarily limited to abnormalities reflecting ventilation-perfusion mismatching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
We studied the acute effects of the inhalation of cigarette smoke on the central and peripheral airways of 35 open-chested and tracheotomized dogs by the direct measurement of central (Rc) and peripheral (Rp) airway resistances. Rc was calculated by dividing the pressure difference between a tracheal catheter and a retrograde catheter by mouth flow, and Rp was obtained by dividing the pressure difference between the retrograde catheter and a pleural capsule by mouth flow. The pleural capsule was attached to the pleural surface for alveolar pressure measurement. Rc and Rp were measured by the 2-Hz forced oscillation method. With lung inhalation of the smoke of two-thirds of one cigarette in vagi intact dogs, Rp increased to 239% of the control value and Rc increased to 112%. After bilateral vagotomy, Rp increased to 143% and Rc increased to 104%. Propranolol did not influence the results. Hexamethonium and atropine both blocked these responses when vagi were intact. When the upper trachea, larynx, and nasopharynx, which were completely blocked by vagotomy, were exposed to the smoke of two-thirds of a cigarette, Rp increased to 155% and Rc increased to 144%. We thus conclude that cigarette smoke causes a major increase in Rp, mainly via the vagal reflex and partially via the stimulation of parasympathetic ganglia (probably nicotine), and a minor increase in Rc via vagal reflex.  相似文献   

9.
In order to examine the effect of acute respiratory acidosis induced by CO2 inhalation prior to maximal exercise on blood lactate and physical performance, double determinations were carried out for each subject on separate days; one day, after CO2 inhalation and other day, after inhalation of room air. It was observed that in the untrained subjects the CO2 inhalation prior to maximal treadmill exercise does not affect endurance time and maximum aerobic power, whereas blood lactate during recovery was lower in CO2 breathing than that in room air. In addition, no significant difference of 200m sprint time in the athletes was noticed between CO2 and room air while blood lactate after 200m sprint running was significantly lower in the CO2 than that in room air. From these results, it was suggested that the effect of CO2 inhalation prior to maximal exercise as applied here appeared to be mediate through metabolic rather than oxygen transport mechanism, but not related to physical performance.  相似文献   

10.

Background

Chronic smoking is the main risk factor for chronic obstructive pulmonary disease. Knowledge on the response to the initial smoke exposures might enhance the understanding of changes due to chronic smoking, since repetitive acute smoke effects may cumulate and lead to irreversible lung damage.

Methods

We investigated acute effects of smoking on inflammation in 16 healthy intermittent smokers in an open randomised cross-over study. We compared effects of smoking of two cigarettes on inflammatory markers in exhaled air, induced sputum, blood and urine at 0, 1, 3, 6, 12, 24, 48, 96 and 192 hours and outcomes without smoking. All sputum and blood parameters were log transformed and analysed using a linear mixed effect model.

Results

Significant findings were: Smoking increased exhaled carbon monoxide between 0 and 1 hour, and induced a greater decrease in blood eosinophils and sputum lymphocytes between 0 and 3 hours compared to non-smoking. Compared to non-smoking, smoking induced a greater interleukin-8 release from stimulated blood cells between 0 and 3 hours, and a greater increase in sputum lymphocytes and neutrophils between 3 and 12 hours.

Conclusion

We conclude that besides an increase in inflammation, as known from chronic smoking, there is also a suppressive effect of smoking two cigarettes on particular inflammatory parameters.  相似文献   

11.
This is a comprehensive review on the harmful health effects of cigarette smoking. Tobacco smoking is a reprehensible habit that has spread all over the world as an epidemic. It reduces the life expectancy among smokers. It increases overall medical costs and contributes to the loss of productivity during the life span. Smoking has been shown to be linked with various neurological, cardiovascular, and pulmonary diseases. Cigarette smoke not only affects the smokers but also contributes to the health problems of the non-smokers. Exposure to environmental tobacco smoke contributes to health problems in children and is a significant risk factor for asthma. Cigarette smoke contains several carcinogens that alter biochemical defense systems leading to lung cancer.  相似文献   

12.
The inverse relationship between cigarette smoking and body weight, a potent obstacle to stopping smoking, may be due in part to effects of smoking on increasing whole body metabolism. Studies examining chronic and acute metabolic effects of smoking, as well as its constituent nicotine, are reviewed. Evidence suggests the absence of a chronic effect; most studies indicate that smokers and nonsmokers have similar resting metabolic rates (RMR) and that RMR declines very little after smoking cessation. Although an acute effect due to smoking is apparent, its magnitude is inconsistent across studies, possibly because of variability in smoke exposure or nicotine intake. In smokers at rest, the acute effect of smoking (and nicotine intake) appears to be significant but small (less than 10% of RMR) and transient (less than or equal to 30 min). However, the specific situations in which smokers tend to smoke may mediate the magnitude of this effect, inasmuch as smoking during casual physical activity may enhance it while smoking after eating may reduce it. Sympathoadrenal activation by nicotine appears to be primarily responsible for the metabolic effect of smoking, but possible contributions from nonnicotine constituents of tobacco smoke and behavioral effects of inhaling may also be important. Improved understanding of these metabolic effects may lead to better prediction and control of weight gain after smoking cessation, thus increasing the likelihood of maintaining abstinence.  相似文献   

13.

Background

Differential diagnosis between acute cardiogenic pulmonary edema (APE) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) may often be difficult. We evaluated the ability of chest sonography in the identification of characteristic pleuropulmonary signs useful in the diagnosis of ALI/ARDS and APE.

Methods

Chest sonography was performed on admission to the intensive care unit in 58 consecutive patients affected by ALI/ARDS or by acute pulmonary edema (APE).

Results

Ultrasound examination was focalised on finding in the two groups the presence of: 1) alveolar-interstitial syndrome (AIS) 2) pleural lines abnormalities 3) absence or reduction of "gliding" sign 4) "spared areas" 5) consolidations 6) pleural effusion 7) "lung pulse". AIS was found in 100% of patients with ALI/ARDS and in 100% of patients with APE (p = ns). Pleural line abnormalities were observed in 100% of patients with ALI/ARDS and in 25% of patients with APE (p < 0.0001). Absence or reduction of the 'gliding sign' was observed in 100% of patients with ALI/ARDS and in 0% of patients with APE. 'Spared areas' were observed in 100% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). Consolidations were present in 83.3% of patients with ALI/ARDS in 0% of patients with APE (p < 0.0001). A pleural effusion was present in 66.6% of patients with ALI/ARDS and in 95% of patients with APE (p < 0.004). 'Lung pulse' was observed in 50% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). All signs, except the presence of AIS, presented a statistically significant difference in presentation between the two syndromes resulting specific for the ultrasonographic characterization of ALI/ARDS.

Conclusion

Pleuroparenchimal patterns in ALI/ARDS do find a characterization through ultrasonographic lung scan. In the critically ill the ultrasound demonstration of a dyshomogeneous AIS with spared areas, pleural line modifications and lung consolidations is strongly predictive, in an early phase, of non-cardiogenic pulmonary edema.  相似文献   

14.
1. Perfusion of livers with whole blood containing carboxyhaemoglobin decreased hepatic O(2) consumption and triglyceride secretion and raised free fatty acid oxidation. 2. Perfusion with [(14)C]carboxyhaemoglobin indicated that there was negligible hepatic uptake of (14)CO. 3. The observations appear to be due to a decrease in O(2) consumption rather than to specific effects of carboxyhaemoglobin.  相似文献   

15.
A study was made of certain information from studies of the State Department of Public Health which bear upon the hypotheses that cigarette-smoking and physical exercise are factors in coronary artery disease. The data supported an association of the disease with cigarette smoking, but not with exercise. An incidental finding was a strong relationship between coronary heart disease and the beginning of the wearing of reading glasses or bifocals at an early age. In the present state of investigations aimed at determining the etiology of coronary artery disease it appears desirable to give serious consideration to multiple factors rather than seeking to find a single cause.  相似文献   

16.
17.
Exercise-induced oxidative stress (EIOS) refers to a condition where the balance of free radical production and antioxidant systems is disturbed during exercise in favour of pro-oxidant free radicals. Breath ethane is a product of free radical-mediated oxidation of cell membrane lipids and is considered to be a reliable marker of oxidative stress. The heatshock protein, haem oxygenase, is induced by oxidative stress and degrades haemoglobin to bilirubin, with concurrent production of carbon monoxide (CO). The aim of this study was to investigate the effect of maximal exercise on exhaled ethane and CO in human, canine, and equine athletes. Human athletes (n = 8) performed a maximal exercise test on a treadmill, and canine (n = 12) and equine (n = 11) athletes exercised at gallop on a sand racetrack. Breath samples were taken at regular intervals during exercise in the human athletes, and immediately before and after exercise in the canine and equine athletes. Breath samples were stored in gas-impermeable bags for analysis of ethane by laser spectroscopy, and CO was measured directly using an electrochemical CO monitor. Maximal exercise was associated with significant increases in exhaled ethane in the human, equine, and canine athletes. Decreased concentrations of exhaled CO were detected after maximal exercise in the human athletes, but CO was rarely detectable in the canine and equine athletes. The ethane breath test allows non-invasive and real-time detection of oxidative stress, and this method will facilitate further investigation of the processes mediating EIOS in human and animal athletes.  相似文献   

18.
Hypoxic and hypercapnic ventilatory responses were measured after two levels of acute inhalation of cigarette smoke, minimum-level nicotine smoke (smoke 1) and nicotine-containing smoke (smoke 2), in 10 normal men. Chemosensitivity to hypoxia and hypercapnia was assessed both in terms of slope factors for ventilation-alveolar PO2 curve (A) and ventilation-alveolar PCO2 line (S) and of absolute levels of minute ventilation (VE) at hypoxia or hypercapnia. Ventilatory response to hypoxia and absolute level of VE at hypoxia significantly increased from 23.5 +/- 22.6 (SD) to 38.6 +/- 31.3 l . min-1 . Torr and from 10.6 +/- 2.5 to 12.6 +/- 3.5 l . min-1, respectively, during inhalation of cigarette smoke 2 (P less than 0.05). Inhalation of cigarette smoke 2 tended to increase the ventilatory response to hypercapnia, and the absolute level of VE at hypercapnia rose from 1.42 +/- 0.75 to 1.65 +/- 0.58 l . min-1 . Torr-1 and from 23.7 +/- 4.9 to 25.5 +/- 5.9 l . min-1, respectively, but these changes did not attain significant levels. Cigarette smoke 2 inhalation induced an increase in heart rate from 64.7 +/- 5.7 to 66.4 +/- 6.3 beats . min-1 (P less than 0.05) during room air breathing, whereas resting ventilation and specific airway conductance did not change significantly. On the other hand, acute inhalation of cigarette smoke 1 changed none of these variables. These results indicate that hypoxic chemosensitivity is augmented after cigarette smoke and that nicotine is presumed to act on peripheral chemoreceptors.  相似文献   

19.
20.
Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号