首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Cholera toxin catalyzed the ADP-ribosylation of the pituitary protein hormones thyrotropin (TSH), lutropin (LH), follitropin (FSH), human chorionic gonadotropin (hCG). and corticotropin (ACTH)1–24, and ADP-ribosylation of the basic proteins histone subfraction H1 and protamine. Casein and phosvitin, acidic nuclear proteins, did not act as acceptors for toxin-catalyzed ADP-ribosylation. The isolated TSH A and B subunits were tested for their ADP-ribose acceptor activity. The TSH A subunit showed fourfold greater ADP-ribose acceptor activity than the TSH B subunit. The ADP-ribose acceptor protein protamine was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis following incubation with cholera toxin under ADP-ribosylating conditions. [3H]ADP-ribose incorporated into protein from [3H]NAD migrated with the acceptor protein protamine. In the absence of added acceptor protein, the [3H]ADP-ribose incorporated into protein migrated with the A1 fragment of cholera toxin. Cholera toxin A and B subunits were isolated and tested for their ability to catalyze the transfer of ADP-ribose to protamine. The cholera toxin A subunit showed 50-fold greater ADP-ribosyltransferase activity than the B subunit. Our data indicate that a variety of adenohypophyseal hormones and regulatory proteins act as acceptors for toxin-catalyzed ADP-ribosylation. These studies may help in understanding the role of endogenous ADP-ribosyltransferases and the physiological effects of this modification of protein.  相似文献   

2.
Clostridium botulinum type E toxin was purified in three chromatography steps. Toxin extracted from cells was concentrated by precipitation and dissolving in a small volume of citrate buffer. When the extract was chromatographed on DEAE-Sephadex without RNase or protamine treatment, the first protein peak had most of the toxin but little nucleic acid. When the toxic pool was applied to a carboxymethyl Sepharose column, toxin was recovered in the first protein peak in its bimolecular complex form. The final chromatography step at 4 degrees C on a DEAE-Sephacel column at a slightly alkaline pH purified the toxin (Mr, 145,000) by separating the nontoxic protein from the complex. At least 1.5 mg of pure toxin was obtained from each liter of culture, and the toxicity was 6 X 10(7) 50% lethal doses per mg of protein. These values are significantly higher than those previously reported.  相似文献   

3.
The major β-1,4-endoglucanase (EG) of the thermophilic actinomycete, Thermomonospora curvata , contributed over 80% of the total EG activity recovered from cell-free culture fluid after growth on cellulose. The enzyme was purified to electrophoretic homogeneity by ammonium sulphate precipitation, ion-exchange chromatography and size exclusion HPLC. This monomeric enzyme had a specific activity of 750 IU mg−1 when assayed with 2.5% (w/v) carboxymethyl cellulose (CMC) at 70°C, pH 6.0. Highest activity was observed on CMC with a degree of polymerization of 3200. The EG was stable for 48 h at 60°C, pH 6.0 and had a half-life of 30 min at 80°C; temperature and pH optima were 70–73°C and 6.0–6.5, respectively. The mol. wt was 100000 and the pI was 4.0. The K m and V max values were 7.33 mg ml−1 and 833 μmol min−1, respectively. EG activity was inhibited by Fe2 +, Hg2 +, Ag+ and Pb2 +, and enhanced by dithiothreitol and Zn2 +. The first 12 amino acid residues at the N -terminus were: Asp-Glu-Val-Asp-Glu-Ile-Arg-Asn-Gly-Asp-Phe-Ser. Glutamic and aspartic acid constituted 24% of the total amino acid composition; no amino sugar was found.  相似文献   

4.
Clostridium botulinum type E toxin was purified in three chromatography steps. Toxin extracted from cells was concentrated by precipitation and dissolving in a small volume of citrate buffer. When the extract was chromatographed on DEAE-Sephadex without RNase or protamine treatment, the first protein peak had most of the toxin but little nucleic acid. When the toxic pool was applied to a carboxymethyl Sepharose column, toxin was recovered in the first protein peak in its bimolecular complex form. The final chromatography step at 4 degrees C on a DEAE-Sephacel column at a slightly alkaline pH purified the toxin (Mr, 145,000) by separating the nontoxic protein from the complex. At least 1.5 mg of pure toxin was obtained from each liter of culture, and the toxicity was 6 X 10(7) 50% lethal doses per mg of protein. These values are significantly higher than those previously reported.  相似文献   

5.
Note: Purification of amylase secreted from Bifidobacterium adolescentis   总被引:1,自引:0,他引:1  
Bifidobacterium adolescentis Int-57 isolated from human faeces produced extracellular amylase. The enzyme was purified from the culture supernatant fluids by ammonium sulphate precipitation, gel-filtration chromatography (Sephadex-G-75), ion-exchange chromatography (CM-cellulose) and FPLC. SDS-PAGE of the purified enzyme revealed a major band with an apparent molecular weight of 66 kDa. The pI was 5·2. Enzyme activity was optimal at 50°C, and at pH 5·5. The enzyme was stable at 20–40°C, and at pH 5–6 with a K m value of 2·4 g l−1 soluble starch. The activation energy was 42·3 kJ mol−1. The enzyme was significantly inhibited by maltose (10%), glucose (10%), Cu2+ (5 mmol l−1), Zn2+ (5 mmol l−1), N- bromosuccinimide (5 mmol l−1), EDTA (5 mmol l−1), I2 (1 mmol l−1) and activated by β-mercaptoethanol (10 mmol l−1).  相似文献   

6.
A chitinase (EC. 3.2.1.14) from autolysed culture filtrate of Penicillium oxalicum was purified by precipitation with ammonium sulphate, gel filtration and ion exchange chromatographies. The purified enzyme showed a single protein band in SDS gel electrophoresis. The enzyme is an acidic protein with a pI of 4.5 and has a molecular weight of 54 900 as estimated from SDS gel electrophoresis and 21 500 from gel filtration. The optimum pH and temperature were 5.0 and 35°C, respectively. The enzyme was stable at temperatures up to 45°C and in a pH range between 4.0 and 6.0. The Km was 2.5 mg ml-1 for colloidal chitin, Hg2+ and Ag+ were effective inhibitors. The viscosimetric study carried out using carboxymethyl chitin as substrate revealed the endotype action of this enzyme.  相似文献   

7.
A rapid, simplified method for production and purification of tetanus toxin from bacterial extracts was described. The extracts were prepared by stirring young cells (ca. 45-h culture) of Clostridium tetani in 1 M NaCl-0.1 M sodium citrate, pH 7.5, overnight at 0 to 4 degrees C. The toxin was purified by a combination of (i) ammonium sulfate fractionation (0 to 40% saturation), (ii) ultracentrifugation for removal of particulate materials, and (iii) gel filtration by high-pressure liquid chromatography on a TSK G3000 SW-type column. This method required 6 days as follows: (i) overnight incubation of the seed culture, (ii) 2 days for growing the bacteria for toxin production, (iii) overnight extraction of the toxin from the bacteria, (iv) overnight precipitation of the toxin with ammonium sulfate, (v) 2 h for ultracentrifugation of the ammonium sulfate concentrate of the bacterial extract, and (vi) 1 h for high-pressure liquid chromatography. The minimum lethal dose of the purified toxin preparations for mice was 1.4 X 10(7) to 1.5 X 10(7) per mg of protein and they showed 360 to 390 Lf (flocculating activity) per mg protein and a 280/260 nm absorbance ratio of 2.0 to 2.1. The final recovery of the toxin from bacterial extracts was 90 to 93%. The purified preparations gave a single band of toxin protein with a molecular weight of 150,000 +/- 5,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On crossed immunoelectrophoresis, the purified toxin preparations gave a single precipitation arc against anti-crude toxin serum.  相似文献   

8.
A rapid, simplified method for production and purification of tetanus toxin from bacterial extracts was described. The extracts were prepared by stirring young cells (ca. 45-h culture) of Clostridium tetani in 1 M NaCl-0.1 M sodium citrate, pH 7.5, overnight at 0 to 4 degrees C. The toxin was purified by a combination of (i) ammonium sulfate fractionation (0 to 40% saturation), (ii) ultracentrifugation for removal of particulate materials, and (iii) gel filtration by high-pressure liquid chromatography on a TSK G3000 SW-type column. This method required 6 days as follows: (i) overnight incubation of the seed culture, (ii) 2 days for growing the bacteria for toxin production, (iii) overnight extraction of the toxin from the bacteria, (iv) overnight precipitation of the toxin with ammonium sulfate, (v) 2 h for ultracentrifugation of the ammonium sulfate concentrate of the bacterial extract, and (vi) 1 h for high-pressure liquid chromatography. The minimum lethal dose of the purified toxin preparations for mice was 1.4 X 10(7) to 1.5 X 10(7) per mg of protein and they showed 360 to 390 Lf (flocculating activity) per mg protein and a 280/260 nm absorbance ratio of 2.0 to 2.1. The final recovery of the toxin from bacterial extracts was 90 to 93%. The purified preparations gave a single band of toxin protein with a molecular weight of 150,000 +/- 5,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On crossed immunoelectrophoresis, the purified toxin preparations gave a single precipitation arc against anti-crude toxin serum.  相似文献   

9.
Two pectic lyases, L1 and L2, from culture liquids of Aureobasidium pullulans LV 10 were partially purified by ultrafiltration, CM-Sepharose 6B, DEAE-cellulose and/or Sephadex G 100 column chromatography, and characterized. L1 and L2 showed optimum activity at pH 5 and 7.5 respectively, and at 40°C. The molecular weights of the enzymes determined by gel filtration were estimated to be 89000 1000 and 55000 1000 for L1 and L2 respectively. Both lyases were activated by Ca2+ ions. L1 attacked highly esterified pectins, L2 attacked low methoxy-pectins in preference to polygalacturonic acid.  相似文献   

10.
Extracellular amylase from Lactobacillus plantarum A6 was purified by fractionated precipitation with ammonium sulphate and by anion exchange chromatography. The homogeneity of the purified fraction was tested by polyacrylamide gel electrophoresis and showed multiple amylase forms. A major form had an estimated molecular weight of 50 kDa. It was identified as an α-amylase, with an optimum pH of 5.5, an optimum temperature of 65°C and K m value of 2.38 g l-1 with soluble starch substrate. The enzyme was inhibited by N -bromosuccinimide, iodine and acetic acid. The enzyme activation energy was 30.9 kJ mol-1.  相似文献   

11.
Shikimate dehydrogenase (SKDH, EC 1.1.1.25) was extracted from seedlings of pepper ( Capsicum annuum L.) and purified 347-fold. The purification procedure included precipitation with ammonium sulphate and chromatography in columns of Reactive Red-agarose, Q-Sepharose and Sephadex G-100. Pepper SKDH isozymes are separable only using PAGE. The purified enzyme has a relative molecular mass of 67 000 as estimated by gel filtration. The optimum pH of enzyme activity is 10.5 and the optimum temperature is 50°C, but the enzyme is quickly inactivated at temperatures higher than 40°C. The purified enzyme exhibited typical Michaelis-Menten kinetics and Km values are 0.087 m M for shikimic acid and 0.017 m M for NADP. The mechanism of reaction is sequential considering NADP as a cosubstrate. Ions such as Ca2+, Mg2+ and Mn2+ activate the enzyme, but Zn2+ and Cu2+ are strong inhibitors. Some phenolic compounds such as guaiacol, protocatechuic acid and 2,4-D are competitive inhibitors of pepper SKDH, showing Ki values of 0.38 m M , 0.27 m M and 0.16 m M , respectively.  相似文献   

12.
Abstract: A new protein kinase modulated by S-100 (tentatively referred to as protein kinase X) was partially purified from pig brain extracts. The activity of protein kinase X, which was independent of Ca2+, was demonstrated when protamine (free base), but not protamine sulfate and other proteins (including histone), was used as substrate. The enzyme activity, found to distribute in both soluble and particulate fractions and to occur at the highest level in brain compared with other tissues (heart, kidney, liver, skeletal muscle, spleen, and testis) of rats, was also modulated by other acidic proteins (calmodulin, troponin C, and stimulatory modulator) in a Ca2+-independent manner. S-100 and other acidic proteins appeared to function as "substrate modifiers" by interacting with protamine (a highly basic protein), but not with the enzyme, thus rendering protamine in the complex a superior phosphate acceptor. The two isoforms of S-100 (i.e., a and b) were equally effective. Although the enzyme was not inhibited by many agents (trifluoperazine, melittin, cytotoxin I, polymyxin B, and spermine) shown to inhibit markedly phospholipid/Ca2+- or calmodulin/Ca2+-stimulated protein kinase, gossypol was found to inhibit specifically protein kinase X. The present findings suggest that S-100, a major acidic protein specific to nervous system, may promote phosphorylation by protein kinase X of certain neural proteins resembling protamine or containing protamine-like domains, in addition to its presumed role of a low-affinity Ca2+-binding protein.  相似文献   

13.
An improved method for purification of pectate lyases (PLI and PLII) from culture fluids of Pseudomonas fluorescens CY091 and Ps. viridiflava PJ-08-6 by using a phosphocellulose cation exchanger was described. Analysis of purified PLI and PLII by sodium dodecyl sulphate-polyacrylamide and isoelectric focusing gel electrophoresis revealed that both enzymes had been purified to near homogeneity. Optimal Ca2+ concentration required for PLI and PLII activity was determined to be 0·5 mmol l−1. The Ca2+ requirement could not be replaced by other metal cations such as Mg2+, Cu2+, Zn2+, Fe3+ and Co2+. Optimal pH for activity was determined to be between 8·5 and 9·0. The K m values for sodium polygalacturonate were 1·28 and 1·11 mg ml−1 for PLI and PLII, respectively. Both PLI and PLII were stable at low temperatures (25°C or below) for at least 1 month. However, at 37°C, the activity decreased 50% in 36 h. Optimal temperatures for activity were estimated to be 46° and 52°C for PLI and PLII, respectively. Thermal stability of both enzymes at elevated temperatures (48°C or higher) increased when CaCl2 or a positively charged molecule such as polylysine was present, but decreased when polygalacturonate or a negatively charged molecule such as heparin was present. PLI and PLII exhibit differential degrees of sensitivity to group-specific inhibitors, including iodoacetic acid and diethylpyrocarbonate. This result suggests that both sulphydryl and imidazole groups are important for the catalytic function of PLI and PLII.  相似文献   

14.
Carrot ( Daucus carota L. cv. Kintoki) cell cultures secrete an α-L-arabinofuranosidase (α-L-AFase, EC 3.2.1.55) into their culture medium during growth. The extracellular α-L-AFase (α-L-AFase-II) was purified to electrophoretic homogeneity from the concentrated medium using ammonium sulfate precipitation, chromatography on DEAE-Sepharose CL-6B, CM-Sepharose CL-6B, Sephacryl S-200HR and Concanavalin A-Sepharose, and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 84 kDa by Sephacryl S-200HR gel-permeation, and 80 kDa by SDS-PAGE under denaturing conditions. The enzyme contained carbohydrate and protein in a ratio of 1:5 (w/w), and was analyzed for amino acid composition and the sequence of the first 21 amino acids of the N-terminus. The isoelectric point was pH 5.6, the pH optimum 3.8, and the temperature optimum 55°C. The activity was inhibited by Zn2+, Ag2+, Cu2+, Hg2+ and p -chloromercuribenzoate. The Km and Vmax values for p -nitrophenyl-α-L-arabinofuranoside were 0.22 m M and 0.11 mmol (mg protein)−1 h−1, respectively. The enzyme acted on beet arabinan in an exo-fashion, and was capable of hydrolysing arabinose-rich polymers purified from pectic polysaccha-rides of carrot cell cultures. However, even after an exhaustive reaction, the enzyme had little or no effect on cell walls from carrot cell cultures.  相似文献   

15.
The δ-endo toxin proteins from Bacillus thuringiensis which kill the larvae of various scarabaeid beetles such as Anomala cuprea, A. rufocuprea and Popillia japonica were purified by DEAE ion exchange chromatography. A protein with a molecular size of 130 kDa was purified. During the purification a minor peak was also detected which was estimated to be 67 kDa by SDS-PAGE. Both 130 and 67 kDa proteins showed larvicidal activity against A. cuprea. The lethal concentration of the 130 kDa protein which killed 50% of the larvae tested (LC50) against A. cuprea was 2 μg g1 compost. A comparison by SDS-PAGE of the V8 protease digestion pattern of the 130 and 67 kDa larvicidal proteins showed that proteolytic resistant core peptides of approximately 60 kDa molecular size were resulted. The N -terminus amino acid sequence of the 130 and 67 kDa proteins was determined to be NH2-XXPNNQNEYEIIDAL and NH2-XSRNPGTFI, respectively, which is not identical to the sequence of CryIA, CryIB, CryIC and CryIII proteins.  相似文献   

16.
Abstract Alkali-tolerant Aspergillus fischeri Fxn1 produced two extracellular xylanases. The major xylanase ( M r 31000) was purified to electrophoretic homogeneity by ammonium sulfate precipitation, anion exchange chromatography and preparatory PAGE. Xylose was the major hydrolysis product from oat spelt and birch wood xylans. It was completely free of cellulolytic activities. The optimum pH and temperature were 6.0 and 60 °C, respectively. pH stability ranged from 5 to 9.5 and the t1 / 2 at 50 °C was 490 min. It had a K m of 4.88 mg ml−1and a V max of 588 μmol min−1 mg−1. The activity was inhibited (95%) by AlCl3 (10 mM). This enzyme appears to be novel and will be useful for studies on the mechanism of hydrolysis of xylan by xylanolytic enzymes.  相似文献   

17.
Abstract An extracellular 5'-nucleotidase produced by a moderate halophile, Micrococcus varians subsp. halophilus was partially purified from the culture filtrate by ethanol precipitation and Sepharose 4B hydrophobic chromatography. The 5'-nucleotidase was a novel halophilic enzyme, requiring 2 M NaCl or 2.5 M KCl and 0.1 mM Co2+ or 0.1 mM Mn2+ for maximal activity.  相似文献   

18.
Antibacterial effect of protamine assayed by impedimetry   总被引:5,自引:0,他引:5  
Impedimetric measurements were used to assay the antibacterial effect of protamine. A good linear correlation between the impedance detection time and the initial cell counts was obtained ( r = 0.99, n = 2). As basic peptides may cause clumping of cells, this correlation curve was used when estimating the cell number after protamine treatment, rather than colony counts.
Protamine from salmon killed growing Gram-positive bacteria and significantly inhibited growth of Gram-negative bacteria in Tryptone Soy Broth (TSB) at 25°C. In general Gram-positive bacteria were more sensitive to protamine than Gram-negative bacteria; the minimum inhibitory concentrations (MIC) determined for Gram-positive strains varied from 20 to 1000 μ ml-1 and for Gram-negative strains from 500 μ ml-1 to more than 4000 μ ml-1.
The effect of protamine on non-growing Listeria monocytogenes Scott A suspended in buffer was not lethal as was the effect on growing cells; however, protamine (50–500 μg ml-1) killed the Gram-negative fish spoilage bacteria Shewanella putrefaciens when the live cells were suspended in buffer.  相似文献   

19.
Domination of Carnobacterium divergens LV13 by a bacteriocin-producing (bac+) organism Carnobacterium piscicola LV17 was dependent on the level of inoculum of the producer strain and its bacteriocin production. When C. piscicola LV17 was grown in APT broth from an initial inoculum of α-104 cfu ml-1, bacteriocin was not produced (bac-) although maximum population was reached. The culture remained bac- during subsequent inoculation at 102-107 cfu ml-1 unless it was first grown on solid medium or if heat-treated supernatant fluids from a bac+ culture of C. piscicola LV17, LV17A or LV17B were added to the culture prior to the stationary phase of growth. Use of purified carnobacteriocins from C. piscicola LV17A and LV17B confirmed their role in regulation of the bac+ phenotype. The need for induction might account in part for differences in bacteriocin production by cultures in liquid and on solid growth media.  相似文献   

20.
Germination in the dark and at 16°C of photoblastic and thermosensitive seeds of Phacelia tanacetifolia was inhibited when incubated with EGTA and the Ca2+-ionophore A 23187; A 23187 in the presence of Ca2+ still inhibited germination, but to a lesser extent. Treatments with EGTA or Ca2+ at different concentrations in the presence or in the absence of A 23187 did not remove light inhibition. The calmodulin (CaM) inhibitor, calmidazolium, strongly inhibited germination. The specificity of these inhibitors and their effects on seed germination are discussed.
CaM from Phacelia tanacetifolia seeds has been purified and its characteristics (molecular weight, heat and acid stability, kinetics of phosphodiesterase [EC 3.1.4.17] activation) were very similar to those of other plant sources. More than 90% of total CaM was present in the soluble fraction (ca 41 μg g-1 fresh weight in ungerminated seeds). The CaM level greatly increased in the early phases of seed germination; this increase did not take place when germination was inhibited by light or high temperature. When fusicoccin, a toxin which promotes germination by activating membrane functions, relieved light or high temperature inhibition, CaM increased up to the control value in the dark at 16°C. The parallel increase in CaM and seed germination suggest that CaM plays an important role in the process. Fusicoccin in the dark at 16°C stimulated CaM and fresh weight increase, but not the metabolic reactivation measured as increase in DNA and total RNA levels; at 30°C fusicoccin stimulated the increase in fresh weight and in CaM level, but the increases in DNA and total RNA were very low. These results suggest that the activation of membrane functions with cell enlargement induced by fusicoccin is related to CaM increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号