首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Similarity of sequences is a key mathematical notion for Classification and Phylogenetic studies in Biology. It is currently primarily handled using alignments. However, the alignment methods seem inadequate for post-genomic studies since they do not scale well with data set size and they seem to be confined only to genomic and proteomic sequences. Therefore, alignment-free similarity measures are actively pursued. Among those, USM (Universal Similarity Metric) has gained prominence. It is based on the deep theory of Kolmogorov Complexity and universality is its most novel striking feature. Since it can only be approximated via data compression, USM is a methodology rather than a formula quantifying the similarity of two strings. Three approximations of USM are available, namely UCD (Universal Compression Dissimilarity), NCD (Normalized Compression Dissimilarity) and CD (Compression Dissimilarity). Their applicability and robustness is tested on various data sets yielding a first massive quantitative estimate that the USM methodology and its approximations are of value. Despite the rich theory developed around USM, its experimental assessment has limitations: only a few data compressors have been tested in conjunction with USM and mostly at a qualitative level, no comparison among UCD, NCD and CD is available and no comparison of USM with existing methods, both based on alignments and not, seems to be available.  相似文献   

2.
There has been an increased interest in computational methods for amyloid and (or) aggregate prediction, due to the prevalence of these aggregates in numerous diseases and their recently discovered functional importance. To evaluate these methods, several datasets have been compiled. Typically, aggregation‐prone regions of proteins, which form aggregates or amyloids in vivo, are more than 15 residues long and intrinsically disordered. However, the number of such experimentally established amyloid forming and non‐forming sequences are limited, not exceeding one hundred entries in existing databases. In this work, we parsed all available NMR‐resolved protein structures from the PDB and assembled a new, sevenfold larger, dataset of unfolded sequences, soluble at high concentrations. We proposed to use these sequences as a negative set for evaluating methods for predicting aggregation in vivo. We also present the results of benchmarking cutting edge tools for the prediction of aggregation versus solubility propensity.  相似文献   

3.
The Chou-Fasman predictive algorithm for determining the secondary structure of proteins from the primary sequence is reviewed. Many examples of its use are presented which illustrate its wide applicability, such as predicting (a) regions with the potential for conformational change, (b) sequences which are capable of assuming several conformations in different environments, (c) effects of single amino acid mutations, (d) amino acid replacements in synthesis of peptides to bring about a change in conformation, (e) guide to the synthesis of polypeptides with definitive secondary structure,e.g. signal sequences, (f) conformational homologues from varying sequences and (g) the amino acid requirements for amphiphilicα-helical peptides.  相似文献   

4.
以黑果枸杞为材料,利用RT PCR和RACE技术克隆了花青素合成相关基因LrTTG1(GenBank登录号为MH633481)。序列分析表明,LrTTG1基因cDNA全长1 453 bp,包含1 029 bp开放阅读框,编码342个氨基酸,含有5个WD40重复基序。同源比对结果表明,LrTTG1与茄子SmTTG1的氨基酸序列相似性较高,达到83.73%。qRT PCR分析显示,LrTTG1基因在茎、叶、花、青果、紫果和黑果中均有表达,且在青果中的表达水平(最高)约为黑果(最低)的4倍;紫外胁迫下LrTTG1基因的表达随胁迫时间的延长呈先降低后升高的变化趋势。花青素含量分析表明,黑果的花青素含量最高(11.3 mg/g),分别约为紫果( 1.2 mg/g)和青果(0.53 mg/g)含量的9.4倍和21.3倍。研究表明,随着黑果枸杞果实的发育,LrTTG1基因的表达量呈现下降趋势,而花青素的含量则呈上升趋势,两者呈负相关关系;推测LrTTG1基因在黑果枸杞花青素合成中可能具有重要的调节作用。  相似文献   

5.
5-Methyltetrahydrofolate (5-MTHF) is the major form of folate in human plasma and is the only folate form that can penetrate the blood–brain barrier. It has been widely used for the prevention and treatment of various diseases. It is mainly produced by chemical synthesis. However, the low production rate cannot meet the increasing demand. In addition, chemical synthesis is potentially detrimental to the environment. Despite various microorganisms synthetizing 5-MTHF, an efficient 5-MTHF bioproduction approach is lacking because of the tight regulation of the 5-MTHF pathway and limited metabolic flux toward the folic acid pathway. In this study, the 5-MTHF synthetic pathway in Bacillus subtilis was systematically engineered to realize 5-MTHF accumulation and further improve 5-MTHF production. Specifically, the 5-MTHF synthesis pathway with dihydrofolate (DHF) as the precursor was strengthened to shift the metabolic flux to 5-MTHF biosynthesis by replacing the native yitJ gene with Escherichia coli metF, knockout of purU, and overexpressing dfrA. The intracellular level of 5-MTHF increased 26.4-fold, reaching 271.64 µg/L. Next, the 5-MTHF precursor supply pathway was strengthened by co-overexpression of folC, pabB, folE, and yciA. This resulted in a 93.2-fold improvement of the 5-MTHF titer, which reached 960.27 µg/L. Finally, the clustered regularly interspaced short palindromic repeats interference system was used to identify key genes in the competitive and catabolic pathways for repression to further shift the metabolic flux toward 5-MTHF biosynthesis. The repression of genes thyA (existing in the purine metabolic pathway), pheA (existing in the competitive metabolic pathway), trpE (existing in the competitive metabolic pathway), and panB (existing in the pantoate synthesis pathway) significantly increased the titer of 5-MTHF. By repressing the pheA gene, the 5-MTHF titer reached 1.58 mg/L, which was 153.8-fold that of the wild-type strain of B. subtilis 168. Through medium optimization, the 5-MTHF titer reached 1.78 mg/L, which was currently the highest titer of 5-MTHF in B. subtilis. Apart from the highest titer of 5-MTHF, the highest titer of total folates including 5-MTHF, 5-FTHF, folic acid, and THF could reach 3.31 mg/L, which was 8.5-fold that in B. subtilis. To the best of our knowledge, the 5-MTHF and total folate titers reported here are the highest using a Generally regarded as safe (GRAS) bacterium as the production host. Overall, this study provides a good starting point for further metabolic engineering to achieve efficient biosynthesis of 5-MTHF by GRAS bacteria.  相似文献   

6.
Litvaitis  M. K. 《Hydrobiologia》2002,468(1-3):135-145
Parsimony and neighbor-joining analyses of 16S rDNA nucleotide sequences of 68 species and strains of cyanobacteria and prochlorophytes supported a monophyletic Nostocales, a monophyletic Stigonematales, three independent lineages of prochlorophytes within the cyanobacteria, and a paraphyletic Chroococcales (p<0.0001) and Oscillatoriales (p = 0.0147). Within the Oscillatoriales, the genus Oscillatoria formed an unnatural taxon (p<0.0001) and needs major revisions. Using constraint analysis, the genus Microcystis was found to be monophyletic and the paraphyletic positions of Microcystis elabens and M. holsatica are probably due to long-branch attraction. Further, a separation of Chroococcales based on varying levels of polyunsaturated fatty acids is more consistent with nucleotide-based phylogenies than with existing morphological groupings. It is proposed that Chroococcales be redefined to exclude the genus Microcystis, and that a new order be erected for Microcystis. Finally, it is more parsimonious to assume a common cyanobacterial/prochlorophyte ancestor, than to evoke de novo synthesis of chlb in each prochlorophyte lineage plus in the lineage leading to green chloroplasts. This common ancestor is proposed to have contained both chlorophyll a and b plus phycobilins. Subsequent multiple losses of chlb in cyanobacteria and the loss of chla and phycobilins in prochlorophytes, led to the currently observed pigment distribution. It is therefore, recommended that Prochlorales be reclassified as cyanobacteria.  相似文献   

7.
Single-nucleotide polymorphisms (SNPs) and insertion–deletions (INDELs) are currently the important classes of genetic markers for major crop species. In this study, methods for developing SNP markers in rapeseed (Brassica napus L.) and their in silico mapping and use for genotyping are demonstrated. For the development of SNP and INDEL markers, 181 fragments from 121 different gene sequences spanning 86 kb were examined. A combination of different selection methods (genome-specific amplification, hetero-duplex analysis and sequence analysis) allowed the detection of 18 singular fragments that showed a total of 87 SNPs and 6 INDELs between 6 different rapeseed varieties. The average frequency of sequence polymorphism was estimated to be one SNP every 247 bp and one INDEL every 3,583 bp. Most SNPs and INDELs were found in non-coding regions. Polymorphism information content values for SNP markers ranged between 0.02 and 0.50 in a set of 86 varieties. Using comparative genetics data for B. napus and Arabidopsis thaliana, an allocation of SNP markers to linkage groups in rapeseed was achieved: a unique location was determined for seven gene sequences; two and three possible locations were found for six and four sequences, respectively. The results demonstrate the usefulness of existing genomic resources for SNP discovery in rapeseed.  相似文献   

8.
The well-known massively parallel sequencing method is efficient and it can obtain sequence data from multiple individual samples. In order to ensure that sequencing, replication, and oligonucleotide synthesis errors do not result in tags (or barcodes) that are unrecoverable or confused, the tag sequences should be abundant and sufficiently different. Recently, many design methods have been proposed for correcting errors in data using error-correcting codes. The existing tag sets contain small tag sequences, so we used a modified genetic algorithm to improve the lower bound of the tag sets in this study. Compared with previous research, our algorithm is effective for designing sets of DNA tags. Moreover, the GC content determined by existing methods includes an imprecise range. Thus, we improved the GC content determination method to obtain tag sets that control the GC content in a more precise range. Finally, previous studies have only considered perfect self-complementarity. Thus, we considered the crossover between different tags and introduced an improved constraint into the design of tag sets.  相似文献   

9.
It has been proved that the principal component of senile plaques is aggregates of β‐amyloid peptide (Aβ) in cases of one of the most common forms of age‐related neurodegenerative disorders, Alzheimer's disease (AD). Although the synthetic methods for the synthesis of Aβ peptides have been developed since their first syntheses, Aβ[1‐42] is still problematic to prepare. The highly hydrophobic composition of Aβ[1‐42] results in aggregation between resin‐bound peptide chains or intrachain aggregation which leads to a decrease in the rates of deprotection and repetitive incomplete coupling reactions during 9‐flurenylmethoxycarbonyl (Fmoc) synthesis. In order to avoid aggregation and/or disrupt internal aggregation during stepwise Fmoc solid phase synthesis and to improve the quality of crude products, several attempts have been made. Since highly pure Aβ peptides in large quantities are used in biological experiments, we wanted to develop a method for a rational synthesis of human Aβ[1‐42] with high purity and adequate yield. This paper reports a convenient methodology with a novel solvent system for the synthesis of Aβ[1‐42], its N‐terminally truncated derivatives Aβ[4‐42] and Aβ[5‐42], and Aβ[1‐42] labeled with 7‐amino‐4‐methyl‐3‐coumarinylacetic acid (AMCA) at the N‐terminus using Fmoc strategy. The use of 10% anisole in Dimethylformamide/Dichloromethane (DMF/DCM) can substantially improve the purity and yield of crude Aβ[1‐42] and has been shown to be an optimal coupling condition for the synthesis of Aβ[1‐42]. Anisole is a cheap and simple aid in the synthesis of ‘difficult sequences’ where other solvents are less successful in the prevention of aggregation during the synthesis. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) is inhibition of specific prostaglandin (PG) synthesis by inhibition of cyclooxygenase (COX) enzymes. The two COX isoenzymes show 60 % similarity. It is known that the nonspecific side effects of conventional NSAIDs are physiologically caused by inhibition of the COX-1 enzyme. Therefore, the use of COX-2 selective inhibitors is seen to be a more beneficial approach in reducing these negative effects. However, some of the existing COX-2 selective inhibitors show cardiovascular side effects. Therefore, studies on the development of new selective COX-2 inhibitors remain necessary. It is important to develop new COX-2 inhibitors in the field of medicinal chemistry. Accordingly, novel N-acyl hydrazone derivatives were synthesized as new COX-2 inhibitors in this study. The hydrazone structure, also known for its COX activity, is important in terms of many biological activities and was preferred as the main structure in the design of these compounds. A methyl sulfonyl pharmacophore was added to the structure in order to increase the affinity for the polar side pocket present in the COX-2 enzyme. It is known that methyl sulfonyl groups are suitable for polar side pockets. The synthesis of the compounds ( 3a – 3j ) was characterized by spectroscopic methods. Evaluation of in vitro COX-1/COX-2 enzyme inhibition was performed by fluorometric method. According to the enzyme inhibition results, the obtained compounds displayed the predicted selectivity for COX-2 enzyme inhibition. Compound 3j showed important COX-2 inhibition with a value of IC50=0.143 uM. Interaction modes between the COX-2 enzyme and compound 3j were investigated by docking studies.  相似文献   

11.
Membrane proteins are crucial for many biological functions and have become attractive targets for both basic research and drug discovery. With the unprecedented increasing of newly found protein sequences in the post-genomic era, it is both time-consuming and expensive to determine the types of newly found membrane proteins solely with traditional experiment, and so it is highly demanded to develop an automatic method for fast and accurately identifying the type of membrane proteins according to their amino acid sequences. In this study, the discrete wavelet transform (DWT) and support vector machine (SVM) have been used for the prediction of the types of membrane proteins. Maximum accuracy has been obtained using SVM with a wavelet function of bior2.4, a decomposition scale j = 4, and Kyte–Doolittle hydrophobicity scales. The results indicate that the proposed method may play an important complementary role to the existing methods in this area.  相似文献   

12.
13.
Estimation of evolutionary distances between nucleotide sequences   总被引:11,自引:0,他引:11  
A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414–422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269–285, 1984) method is superior to others.  相似文献   

14.
Elastin-like peptides (ELPs) are synthetic peptides that mimic the characteristic hydrophobic amino acid repeat sequences of elastin and exhibit temperature-dependent reversible self-assembly properties. ELPs are expected to be used as temperature-responsive biomolecular materials across diverse industrial and research fields, and there is a requirement for a straightforward method to mass-produce them. Previously, we demonstrated that phenylalanine-containing ELP analogs, namely, (FPGVG)n, can undergo coacervation with short chains (n = 5). The Fmoc solid-phase peptide synthesis method is one strategy used to synthesize these short ELPs. However, owing to its low reaction efficiency, an efficient method for preparing ELPs is required. In this study, efficient preparation of ELPs was investigated using a liquid-phase synthesis method with a hydrophobic benzyl alcohol support (HBA-tag). Because HBA-tags are highly hydrophobic, they can be easily precipitated by the addition of poor solvents and recovered by filtration. This property allows the method to combine the advantages of the simplicity of solid-phase methods and the high reaction efficiency of liquid-phase methods. By utilizing liquid-phase fragment condensation with HBA-tags, short ELPs were successfully obtained in high yield and purity. Finally, the temperature-dependent response of the ELPs generated through fragment condensation was assessed using turbidity measurements, which revealed a reversible phase transition. Consequently, the ELPs exhibited a reversible phase transition, indicating successful synthesis of ELPs via fragment preparation with tags. These findings provide evidence of the potential for mass production of ELPs using this approach.  相似文献   

15.
16.
L-Tryptophan (L-Trp) is an essential amino acid. It is widely used in medical, health and food products, so a low-cost supply is needed. There are 4 methods for L-Trp production: chemical synthesis, extraction, enzymatic synthesis, and fermentation. In this study, we produced a recombinant bacterial strain pET-tnaA of Escherichia coli which has the L-tryptophanase gene. Using the pET-tnaA E. coli and the strain TS1138 of Pseudomonas sp., a one-pot enzymatic synthesis of L-Trp was developed. Pseudomonas sp. TS1138 was added to a solution of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to convert it to L-cysteine (L-Cys). After concentration, E. coli BL21 (DE 3) cells including plasmid pET-tnaA, indole, and pyridoxal 5’-phosphate were added. At the optimum conditions, the conversion rates of DL-ATC and L-Cys were 95.4% and 92.1%, respectively. After purifying using macroporous resin S8 and NKA-II, 10.32 g of L-Trp of 98.3% purity was obtained. This study established methods for one-pot enzymatic synthesis and separation of L-Trp. This method of producing L-Trp is more environmentally sound than methods using chemical synthesis, and it lays the foundations for industrial production of L-Trp from dl-ATC and indole.  相似文献   

17.
We report details of the chemical synthesis of two fragments reproducing the C-terminal sequences 71-108 and 70-108 of Saccharomices cerevisiae cytochrome c. Preparation of the fragments employed classical solution methods and a fragment-condensation strategy; they have been used, together with a third fragment (sequence 67-108) [L. Moroder, B. Filippi, G. Borin & F. Marchiori (1975) Biopolymers 14 , 2061–2074], in the semisynthesis of chimeric cytochromes [C. J. A. Wallace, G. Corradin, F. Marchiori & G. Borin (1986) Biopolymers 25 , 2121–2132].  相似文献   

18.
The efficient and rapid synthesis of 5-nitro-2-aryl substituted-1H-benzimidazole libraries (1a-1j) has been established. Thus, both microwave and conventional cyclo-condensation of 4-nitro ortho-phenylenediamine with various phenoxyacetic acids were carried out in the presence of HCl catalyst. The microwave synthesis route afforded advantages, such as good to excellent yields, shorter reaction time (2.5–3.5?min), readily available starting material, and simple purification procedure, which distinguish the present protocol from other existing methods used for the synthesis of benzimidazole libraries. Bioassay indicated that all the compounds showed in vitro antimicrobial activity against Vancomycin resistant enteroccoccus, Staphylococcus aureus, Micrococcus, Bacillus subtilis (gram-positive bacteria) and Shigella dysentery, Escherichia coli (gram-negative bacteria) and Candida albicans, Aspergillus niger, Penicillium (fungi). The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standards.  相似文献   

19.
An algorithm for prediction of the exon-intron structure of higher eukaryotic genes is suggested. The algorithm is based on comparison of genomic sequences of homologous genes from different species. It uses the fact that protein-coding sequences evolve slower than noncoding regions. Unlike the existing comparison methods, the proposed algorithm, which is a modified version of splicing alignment, compares not nucleotide but amino acid sequences, which increases its sensitivity. Conservation of the exon-intron structures of the compared genes is not assumed. The algorithm is implemented in the program Pro-Gen. The testing of the algorithm demonstrated that it can be successfully applied to prediction of vertebrate genes, and in some cases, for more distant comparisons (e.g., vertebrates and insects or nematodes). Thus, the program can be used for prediction of human genes by comparison with genes of model organisms: mouse, fugu, drosophila, and nematode. The algorithm overcomes deficiencies of the existing methods, both statistical (insufficient reliability) and similarity-based (inapplicability to completely new genes).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号