首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Studies on lignin biodegradation are considerably hampered by the lack of a simple analytical method. A rapid colorimetric assay for lignin has been developed using its reaction with a diazotized derivative of sulfanilic acid. Using such a method degradation of lignin, by an isolateErwinia sp. Cu3614, and by a genetically engineeredAcinetobacter PE7(pDPE2388) containing the arylether cleaving gene fromErwinia, has been followed.  相似文献   

2.
3.
Polybrominated diphenyl ethers (PBDEs) are common flame-retardant chemicals that are used in diverse commercial products such as textiles, circuit boards, and plastics. Because of the widespread production and improper disposal of materials that contain PBDEs, there has been an increasing accumulation of these compounds in the environment. The toxicity and bioavailability of PBDEs are variable for different congeners, with some congeners showing dioxin-like activities and estrogenicity. The diphenyl ether-utilizing bacterium Sphingomonas sp. PH-07 was enriched from activated sludge of a wastewater treatment plant. In liquid cultures, this strain mineralized 1 g of diphenyl ether per liter completely within 6 days. The metabolites detected and identified by gas chromatography/mass spectrometry (MS) and electrospray ionization/MS analysis corresponded with a feasible degradative pathway. However, the strain PH-07 even catabolized several brominated congeners such as mono-, di-, and tribrominated diphenyl ethers thereby producing the corresponding metabolites.  相似文献   

4.
Summary A bacterium tentatively identified as anErwinia sp. was isolated from sewage by enrichment on methanol and lignin. Several mutants developed from this strain were studied for their ability to degrade aromatic ethers. Different concentrations of the chemicals were incubated with the organisms and the degradation was estimated by high-performance liquid chromatography (HPLC). Among these mutants, one isolate,Erwinia sp. strain CU3614, showed resistance to copper ions (>20 mM CuSO4) and the ability to degrade 4-hydroxydiphenyl ether (4-HDPE), 4-chlorodiphenyl ether (4-CDPE), 4-nitrodiphenyl ether (4-NDPE) and 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) in the presence of copper ions. Increased concentrations of copper in the medium resulted in higher degradation of 4-HDPE. Further studies with copper-sensitive mutants obtained fromErwinia sp. CU3614 by Tn5 transposon-induced mutagenesis showed a corresponding decrease in the ability to degrade 4-HDPE. These results suggest the presence of a copper-associated activity in the biotransformation of aromatic ethers.  相似文献   

5.
Assimilation of ethyleneglycol (EG) ethers by polyethyleneglycol-utilizing bacteria was examined. Ethyleneglycol ether-utilizing bacteria were also isolated from soil and activated sludge samples by enrichment-culture techniques. Three strains (4-5-3, EC 1-2-1 and MC 2-2-1) were selected and characterized as Pseudomonas sp. 4-5-3, Xanthobacter autotrophicus, and an unidentified gram-negative, non-spore-forming rod respectively. Their growth characteristics were examined: Pseudomonas sp. 4-5-3 assimilated EG (diethyleneglycol, DEG) monomethyl, monoethyl and monobutyl ethers, DEG, propanol and butanol. X. autotrophicus EC 1-2-1 grew well on EG monoethyl and monobutyl ethers, EG and primary alcohols (C1-C4), and slightly on EG monomethyl ether. The strain MC 2-2-1 grew on EG monomethyl ether, EG, primary alcohols (C1-C4), and 1,2-propyleneglycol (PG). The mixed culture of Pseudomonas sp. 4-5-3 and X. autotrophicus EC 1-2-1 showed better growth and improved degradation than respective single cultures towards EG monomethyl, monoethyl or monobutyl ethers. Intact cells of Pseudomonas sp. 4-5-3 degraded various kinds of monoalkyl ethers, which cannot be assimilated by the strain. Metabolic products were characterized from reaction supernatants of intact cells of Pseudomonas sp. 4-5-3 with EG or DEG monoethyl ethers: they were analyzed by thin-layer chromatography and GC-MS and found to be ethoxyacetic acid and ethoxyglycoxyacetic acid. Also, PG monoalkyl ethers (C1-C4), dipropyleneglycol monoethyl and monomethyl ethers and tripropyleneglycol monomethyl ether were assimilated by polypropyleneglycol-utilizing Corynebacterium sp. 7.  相似文献   

6.
Manipulation of the fermentation of the marine‐derived fungus Penicillium chrysogenum by addition of CaBr2 resulted in induced production of bromodiphenyl ether analogs. Two new free‐radical‐scavenging polybrominated diphenyl ethers, 1 and 2 , and three known diphenyl ethers, 3,3′‐dihydroxy‐5,5′‐dimethyldiphenyl ether ( 3 ), and an inseparable mixture of violacerol‐I ( 4 ) and violacerol‐II ( 5 ) were isolated. The structures of the two new polybromodiphenyl ethers 1 and 2 were assigned by combined spectroscopic‐data analysis, including deuterium‐induced isotope effect. Compounds 1 – 3 , and a mixture of 4 and 5 exhibited radical‐scavenging activities against 1,1‐diphenyl‐2‐picrylhydrazyl with IC50 values of 18, 15, 42, and 6 μM , respectively. With the exception of 3 , the compounds were, therefore, more active than the positive control, ascorbic acid (IC50 20 μM ).  相似文献   

7.
The bacterium Sphingomonas sp. strain SS3, which utilizes diphenyl ether and its 4-fluoro, 4-chloro, and (to a considerably lesser extent) 4-bromo derivatives as sole sources of carbon and energy, was enriched from soil samples of an industrial waste deposit. The bacterium showed cometabolic activities toward all other isomeric monohalogenated diphenyl ethers. During diphenyl ether degradation in batch culture experiments, phenol and catechol were produced as intermediates which were then channeled into the 3-oxoadipate pathway. The initial step in the degradation follows the recently discovered mechanism of 1,2-dioxygenation, which yields unstable phenolic hemiacetals from diphenyl ether structures. Oxidation of the structure-related dibenzo-p-dioxin yielded 2-(2-hydroxyphenoxy)-muconate upon ortho cleavage of the intermediate 2,2',3-trihydroxydiphenyl ether. Formation of phenol, catechol, halophenol, and halocatechol from the conversion of monohalogenated diphenyl ethers gives evidence for a nonspecific attack of the dioxygenating enzyme system.  相似文献   

8.
The bacterium Sphingomonas sp. strain SS3, which utilizes diphenyl ether and its 4-fluoro, 4-chloro, and (to a considerably lesser extent) 4-bromo derivatives as sole sources of carbon and energy, was enriched from soil samples of an industrial waste deposit. The bacterium showed cometabolic activities toward all other isomeric monohalogenated diphenyl ethers. During diphenyl ether degradation in batch culture experiments, phenol and catechol were produced as intermediates which were then channeled into the 3-oxoadipate pathway. The initial step in the degradation follows the recently discovered mechanism of 1,2-dioxygenation, which yields unstable phenolic hemiacetals from diphenyl ether structures. Oxidation of the structure-related dibenzo-p-dioxin yielded 2-(2-hydroxyphenoxy)-muconate upon ortho cleavage of the intermediate 2,2',3-trihydroxydiphenyl ether. Formation of phenol, catechol, halophenol, and halocatechol from the conversion of monohalogenated diphenyl ethers gives evidence for a nonspecific attack of the dioxygenating enzyme system.  相似文献   

9.
A new tribromoiododiphenyl ether ( 1 ) and eight known brominated diphenyl ethers ( 2 – 9 ) were isolated from the MeOH extract of the sponge Arenosclera sp. collected in Vietnam, using repeated open column chromatography and preparative thin layer chromatography. The chemical structure of the new compound 1 was determined by analyses of spectroscopic (1D‐ and 2D‐NMR, and MS) data and by comparison of our data with those reported in the literature. Compounds 1 , 3 , and 8 exhibited strong antibacterial activities against the Gram‐positive bacteria Bacillus subtilis and Staphylococcus aureus and the Gram‐negative bacterium Klebsiella pneumoniae with MIC values ranging from 0.8 to 6.3 μm , while compounds 5 and 7 only displayed activities against Gram‐positive bacteria with MIC values from 0.5 to 3.1 μm . Compound 2 showed activities against the four tested bacteria with MIC values ranging from 0.5 to 6.3 μm .  相似文献   

10.
An Alcaligenes sp. BR60, isolated from surface runoff waters of the Hyde Park industrial landfill, contained a novel 85 kb catabolic plasmid (pBR60) functional in 3-chlorobenzoate (3Cba) degradation. The plasmid exhibited a spontaneous 3.2% frequency of deletion of a 14 kb fragment specifying 3Cba degradation. The deletion mutant BR40 and mitomycin C cured strains were not able to grow on 3Cba and had reversion frequencies of less than 10-10 cell-1 generation-1. Transformation or conjugation of pBR60 into cured strains restored catabolic activity. An EcoRI, BgIII, HindIII and SaII restriction map of the deletion region was constructed, and EcoRI and HindIII fragments spanning the deletion region of the plasmid were cloned in pUC18. Conjugation of resistance plasmid R 68.45 into Alcaligenes sp. BR60, with selection on antibiotics, resulted in the elimination of pBR60 and maintenance of unaltered R68.45. In 30% of the exconjugants, 3Cba degradative capacity was retained, although variation in the regulation of 3Cba degradation was observed in these strains. Hybridization of deletion region fragments to BgIII digested total DNA of BR60 and the R68.45 cured exconjugants revealed the presence of pBR60 deletion region sequences in the chromosome of exconjugants. Hybridization also revealed a repeated sequence flanking the deletion region of pBR60. Selection on 4-chlorobenzoate as a sole source of carbon and energy resulted in the isolation of 4Cba+ mutants of Alcaligenes sp. BR60.Abbreviations 3 and 4 Cba chlorobenzoic acid isomers and growth phenotypes - HPLC high pressure liquid chromatography - ATCC American Type Culture Collection  相似文献   

11.
To develop a host-vector system forMethylobacterium sp. using a construct based on a small indigenous methylotrophic plasmid, theE. coliMethylobacterium sp. shuttle vector pWUBR (12.7 kb, Apr, Tcr) was constructed by joining theE. coli plasmid pBR328 and the cryptic plasmid pWU7 (7.8 kb), isolated from the soil facultative methylotrophic bacterium,Methylobacterium sp. strain M17.Via mobilization by the pDPT51 R plasmid, belonging to the IncP-1 incompatibility group, plasmid pWUBR was transferred into the original host of cryptic plasmid pWU7, strain M17, where a competition between the introduced hybrid plasmid and the indigenous cryptic plasmid took place, and into the plasmidlessMethylobacterium sp. strain R2b. The stability of pWUBR in Tcr methylotrophic transconjugants after 25 generations of growth under nonselective conditions was more than 90 % in both hosts. The ability to replicate in R2b strain demonstrates that the host spectrum of pWUBR is not restricted to the original host of pWU7 and indicates the possibility to use the present system for other methylotrophs.  相似文献   

12.
Summary The hypothesis that the early enzymes of the degradative pathway determined by the TOL plasmid pWW0 are positively regulated by the product of the xylR gene has been tested by constructing a strain which is a partial diploid for the TOL genes. Two parental plasmids were first constructed by in vivo methods, neither of which could determine the ability to grow on m-xylene, one of the primary substrates of the plasmid degradative pathway, because of mutations. One of these, pWW0-216, was a derivative of pWW0 but carried a xylR - allele and a copy of the Tn401 transposon, encoding carbenicillin resistance. The other plasmid, pWW0-152, was a derivative of the promiscuous R plasmid RP4 into which had been translocated part of a pWW0 plasmid carrying a wild type xylR + allele but with a defective xylA, the structural gene for xylene oxidase. When these two plasmids were mated into the same strain, all the transconjugants examined grew on m-xylene and one representative of these, PaW 219, was shown to contain induced levels of xylene oxidase when grown under inducing conditions. The possibility that ability to utilise m-xylene was due to recombination between or reversion of the coexisting plasmids was eliminated by demonstrating that the two parental plasmids segregated on mating out from PaW 219. It is concluded therefore that xylR + is transdominant to xylR -, and that its gene product is a positive regulator.  相似文献   

13.
Pseudomonas sp. strain NyZ402 was isolated for its ability to grow on para-nitrophenol (PNP) as a sole source of carbon, nitrogen, and energy, and was shown to degrade PNP via an oxidization pathway. This strain was also capable of growing on hydroquinone or catechol. A 15, 818 bp DNA fragment extending from a 800-bp DNA fragment of hydroxyquinol 1,2-dioxygenase gene (pnpG) was obtained by genome walking. Sequence analysis indicated that the PNP catabolic gene cluster (pnpABCDEFG) in this fragment shared significant similarities with a recently reported gene cluster responsible for PNP degradation from Pseudomonas sp. strain WBC-3. PnpA is PNP 4-monooxygenase converting PNP to hydroquinone via benzoquinone in the presence of NADPH, and genetic analysis indicated that pnpA plays a key role in PNP degradation. pnpA1 present in the upstream of the cluster (absent in the cluster from strain WBC-3) encodes a protein sharing as high as 55% identity with PnpA, but was not involved in PNP degradation by either in vitro or in vivo analyses. Furthermore, an engineered strain capable of growing on PNP and ortho-nitrophenol (ONP) was constructed by introducing onpAB (encoding ONP monooxygenase and ortho-benzoquinone reductase which catalyzed the transformation of ONP to catechol) from Alcaligenes sp. strain NyZ215 into strain NyZ402.  相似文献   

14.
Summary In order to isolate a DNA fragment able to complement a sporulation-deficient mutation in Saccharomyces cerevisiae, a simple screening procedure was devised which was based on the difference in osmotic sensitivity between protoplasts and spores. A plasmid (pHT7) containing a 13 kb DNA insert that complemented the spoT7 mutation was isolated from a yeast genomic library prepared in the vector YEp13. Gene spoT7 was linked to rna1 at 1.2 cM and to mak27 at 7.2 cM on the right arm of chromosome XIII. Mapping of the cloned gene following integration into the chromosome showed that the cloned gene was allelic to spoT7 and that a part of the RNA1 gene was also cloned into the same fragment. Gene spoT7 was localized on a 5 kb DNA fragment by further subcloning.Abbreviations kb kilobase pairs - cM centiMorgans  相似文献   

15.
Summary The activity of the nuclear gene PET494 is required to allow expression of the yeast mitochondrial gene oxi2. To aid the study of the mechanism of action of PET494 we have isolated this gene from yeast DNA. A clone bank of yeast DNA fragments in a yeast-E. coli shuttle vector was screened by transformation for a plasmid able to complement the pet494-1 amber mutation. A complementing plasmid was obtained that contained a unique 4.4 kb yeast sequence. This 4.4 kb sequence contains the PET494 gene. Integration of a plasmid containing it into chromosomal DNA by homologous recombination, and subsequent genetic analysis, demonstrated that the 4.4 kb fragment was tightly linked to the pet494-1 mutation. In addition, the corresponding 4.4 kb sequence isolated from a pet494-1 mutant failed to complement the mutation. A 2 kb fragment, subcloned from the original plasmid retained the ability to complement the mutation. The pet494-1 mutation maps to chromosome XIV between rna2 and lys9, approximately 2.4 cm from lys9.  相似文献   

16.
A 4-hydroxyphenylacetic acid (4-HPA) hydroxylase-encoding gene, on a 2.7-kb genomic DNA fragment, was cloned from the thermophile Geobacillus sp. PA-9. The Geobacillus sp. PA-9 4-HPA hydroxylase gene, designated hpaH, encodes a protein of 494 amino acids with a predicted molecular mass of 56.269 Da. The deduced amino-acid sequence of the hpaH gene product displayed <30% amino-acid sequence identity with the larger monooxygenase components of the previously characterized two-component 4-HPA 3-hydroxylases from Escherichia coli W and Klebsiella pneumoniae M5a1. A second oxidoreductase component was not present on the 2.7-kb genomic DNA fragment. The deduced amino-acid sequence of a second C-terminal truncated open reading frame, designated hpaI, exhibited homology to extradiol oxygenases and displayed the highest amino-acid sequence identity (43%) with the 3,4-dihydroxyphenylacetate 2,3-dioxygenase of Arthrobacter globiformis, encoded by mndD. These results, along with catalytic activity observed in crude intracellular extracts prepared from Escherichia coli cells expressing hpaH, is in support of a role for hpaH in the 4-HPA degradative pathway of Geobacillus sp. PA-9.  相似文献   

17.
Synechocystis sp. PCC 6803 is capable of facultative photoheterotrophy with glucose as the sole carbon source. Eight mutants that were unable to take up glucose were transformed with plasmids from pooled gene banks of wild-type Synechocystis DNA prepared in an Escherichia coli vector that does not replicate in Synechocystis. One mutant (EG216) could be complemented with all gene banks to restore ability for photoheterotrophic growth. One of the gene banks was fractionated into single clones and plasmid DNA from each clone used to complement EG216. This yielded a 1.5 kb DNA fragment that was sequenced. It contained one complete open reading frame (gtr) whose putative gene product displayed high sequence conservation with the xylose transporter of E. coli and the mammalian glucose transporters. Further, the isolated gtr gene interrupted in vitro by a kanamycin resistance cassette could be used to construct mutants from wild-type Synechocystis sp. PCC 6803 that lacked a functional glucose transporter, thus confirming the identity of the gtr gene with the glucose transporter gene. This is the first prokaryotic glucose transporter known to share a sequence relationship with mammalian glucose transporters and the first sugar transporter from a cyanobacterium characterized at the sequence level.  相似文献   

18.
Zhang Y  Wu JF  Zeyer J  Meng B  Liu L  Jiang CY  Liu SQ  Liu SJ 《Biodegradation》2009,20(1):55-66
Comamonas sp. strain CNB-1 can utilize 4-chloronitrobenzene (4CNB) as sole carbon and nitrogen source for growth. Previous studies were focused on 4CNB degradative pathway and have showed that CNB-1 contained a plasmid pCNB1 harboring the genes (cnbABCaCbDEFGH, cnbZ) for the enzymes involving in 4CNB degradation, but only three gene products (CnbCa, CnbCb, and CnbZ) were identified in CNB-1 cells. Comamonas strain CNB-2 that lost pCNB1 was not able to grow on 4CNB. In this study, physiological adaptation to 4CNB by CNB-1 was investigated with proteomic and molecular tools. Comparative proteomes of strains CNB-1 and CNB-2 grown on 4CNB and/or succinate revealed that adaptation to 4CNB by CNB-1 included specific degradative pathway and general physiological responses: (1) Seven gene products (CnbA, CnbCa, CnbCb, CnbD, CnbE, CnbF, and CnbZ) for 4CNB degradation were identified in 4CNB-grown cells, and they were constitutively synthesized in CNB-1. Two genes cnbE and cnbF were cloned and simultaneously expressed in E. coli. The CnbE and CnbF together catalyzed the conversion of 2-oxohex-4-ene-5-chloro-1,6-dioate into 2-oxo-4-hydroxy-5-chloro-valeric acid; (2) Enzymes involving in glycolysis, tricarboxylic acid cycle, and synthesis of glutamate increased their abundances in 4CNB-grown cells.  相似文献   

19.
Arthrobacter globiformis D47 was shown to degrade a range of substituted phenylurea herbicides in soil. This strain contained two plasmids of approximately 47 kb (pHRIM620) and 34 kb (pHRIM621). Plasmid-curing experiments produced plasmid-free strains as well as strains containing either the 47- or the 34-kb plasmid. The strains were tested for their ability to degrade diuron, which demonstrated that the degradative genes were located on the 47-kb plasmid. Studies on the growth of these strains indicated that the ability to degrade diuron did not offer a selective advantage to A. globiformis D47 on minimal medium designed to contain the herbicide as a sole carbon source. The location of the genes on a plasmid and a lack of selection would explain why the degradative phenotype, as with many other pesticide-degrading bacteria, can be lost on subculture. A 22-kb EcoRI fragment of plasmid pHRIM620 was expressed in Escherichia coli and enabled cells to degrade diuron. Transposon mutagenesis of this fragment identified one open reading frame that was essential for enzyme activity. A smaller subclone of this gene (2.5 kb) expressed in E. coli coded for the protein that degraded diuron. This gene and its predicted protein sequence showed only a low level of protein identity (25% over ca. 440 amino acids) to other database sequences and was named after the enzyme it encoded, phenylurea hydrolase (puhA gene).  相似文献   

20.
IncP plasmid r68.45, which carries several antibiotic resistance genes, and IncP plasmid pJP4, which contains genes for mercury resistance and 2,4-dichlorophenoxyacetic acid degradation, were evaluated for their ability to transfer to soil populations of rhizobia. Transfer of r68.45 was detected in nonsterile soil by using Bradyrhizobium japonicum USDA 123 as the plasmid donor and several Bradyrhizobium sp. strains as recipients. Plasmid transfer frequencies ranged up to 9.1 × 10-5 in soil amended with 0.1% soybean meal and were highest after 7 days with strain 3G4b4-RS as the recipient. Transconjugants were detected in 7 of 500 soybean nodules tested, but the absence of both parental strains in these nodules suggests that plasmid transfer had occurred in the soil, in the rhizosphere, or on the root surface. Transfer of degradative plasmid pJP4 was also evaluated in nonsterile soil by using B. japonicum USDA 438 as the plasmid donor and several Bradyrhizobium sp. strains as recipients. Plasmid pJP4 was transferred only when strains USDA 110-ARS and 3G4b4-RS were the recipients. The plasmid transfer frequency was highest for strain 3G4b4-RS (up to 7.4 × 10-6). Mercury additions to soil, ranging from 10 to 50 μg/g of soil, did not affect population levels of parental strains or the plasmid transfer frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号