首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Anlage of the Drosophila visual system, called eye field, comprises a domain in the dorso-medial neurectoderm of the embryonic head and is defined by the expression of the early eye gene sine oculis (so). Beside the eye and optic lobe, the eye field gives rise to several neuroblasts that contribute their lineages to the central brain. Since so expression is only very short lived, the later development of these neuroblasts has so far been elusive. Using the P-element replacement technique [Genetics, 151 (1999) 1093] we generated a so-Gal4 line driving the reporter gene LacZ that perdures in the eye field derived cells throughout embryogenesis and into the larval period. This allowed us to reconstruct the morphogenetic movements of the eye field derived lineages, as well as the projection pattern of their neurons. The eye field produces a dorsal (Pc1/2) and a ventral (Pp3) group of three to four neuroblasts each. In addition, the target neurons of the larval eye, the optic lobe pioneers (OLPs) are derived from the eye field. The embryonically born (primary) neurons of the Pp3 lineages spread out at the inner surface of the optic lobe. Together with the OLPs, their axons project to the dorsal neuropile of the protocerebrum. Pp3 neuroblasts reassume expression of so-Gal4 in the larval period and produce secondary neurons whose axonal projection coincides with the pattern formed by the primary Pp3 neurons. Several other small clusters of neurons that originate from outside the eye field, but have axonal connections to the dorsal protocerebrum, also express so and are labeled by so-Gal4 driven LacZ. We discuss the dynamic pattern of the so-positive lineages as a tool to reconstruct the morphogenesis of the larval brain.  相似文献   

2.
Retrograde staining of retina of Lymnaea stagnalis with neurobiotin demonstrated that most photoreceptor cells send axons to the optic nerve directly, without intermediate contacts. Some of the photoreceptors are glutamate-immunoreactive suggesting that glutamate can provide the synaptic transmission of visual signal to the central neurons. Other photoreceptors stained via optic nerve seem to have other transmitter systems. Some of the retinal cells, but not the optic nerve fibers are pigment-dispersing hormone-immunoreactive. There are many serotonin-containing fibers in the tissue surrounding the optic cup with some of them penetrating the basal lamina of retina. Some of them belong to central neurons providing efferent innervation of the pond snail eye. Serotonergic innervation as well as pigment-dispersing hormone-containing cells are supposed to be involved in mechanism of the photosensitivity regulation of the molluscan eye.  相似文献   

3.
The marine gastropod Aplysia has a circadian clock in each eye that generates a circadian rhythm of optic nerve activity. The axons of pacemaker neurons carry the rhythmic activity to the brain where it can be recorded from various ganglionic connectives as it is distributed throughout the CNS. We had previously identified an eye-specific 48-kD protein using an antiserum, anti-S, that recognizes the period gene product of Drosophila. We have now obtained two partial amino acid sequences of the 48-kD protein and raised a polyclonal antiserum using a synthetic peptide with the amino acid sequence of one of them. The antiserum recognizes a family of spots of Mr 47–48 kD and Pi 5.9–6.0 on 2D immunoblots of eye proteins. The immunoblot staining intensity does not exhibit a circadian rhythm. Used in immunocytochemistry, the antiserum recognizes fibers in the optic nerve and retinal neuropil, pacemaker neurons, certain photoreceptors, and the photoreceptor rhabdom layer. It stains the optic nerve fibers and optic fiber terminals in the cerebral optic ganglion and recognizes the cerebral optic tracts, putative synaptic exchange areas, and optic tract projections from the cerebral ganglion into various head nerves and interganglionic connectives. The function of the 48-kD protein is not known but it could be involved in the maintenance or regulation of the retinal afferent pathways, including the pacemaker neuron axons, known from previous axonal transport and electrical recording studies to be the circadian output pathway. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The fiber constituents and connections of the calyces — the input-receiving regions — of the corpora pedunculata (“mushroom bodies”) were studied in reduced silver preparations from the American cockroach, Periplaneta americana (L.). In the outer synaptic layer of the calyces five fiber classes were distinguished, the first three of which arise outside the mushroom body. (1) Four highly similar neurons with somata near the optic lobe branch into different parts of the ipsiateral protocerebrum, including both calyces. Their fibers are highly constant in arrangement and position and contain small nucleus-like bodies. (2) The tractus olfactorio-globularis (sensu lato) emits fiber groups which course along the calycal walls as “calycal tracts” before ultimately dissipating into the synaptic layer. Variability within these tracts is described. (3) Fibers of undertermined origin outside the mushroom body radiate from the calycal center outwards through the synaptic layer. (4) From the inner calycal layer of neurites belonging to intrinsic mushroom-body neurons, perpendicular collaterals enter the synaptic layer. (5) Intrinsic-neuron somata near the calycal rim emit fibers which course tangentially within the synaptic layer from calycal rim to center. These fibers form a special peripheral zone in the pedunculus. The predominant presumably afferent calycal fiber class is that derived from the tractus olfactorio-globularis. No evidence was found for tracts from optic lobe to calyces. On this basis, and in light of the experimental and comparative anatomical literature, it is suggested that the corpora pedunculata of P. americana and other pterygotes are fundamentally second-order antennal sensory processing centers. Conflicting observations in earlier reports are critically discussed.  相似文献   

5.
Summary The structure of ommatidia at the dorsal eye margin of the fly, Calliphora erythrocephala is specialized for the detection of the e-vector of polarized light. Marginal zone ommatidia are distinguished by R7/R8 receptor cells with large-diameter, short, untwisted rhabdomeres and long axons to the medulla. The arrangement of the R7 microvillar directions along the marginal zone is fan-shaped. Ommatidia lining the dorsal and frontal edge of the eye lack primary screening pigments and have foreshortened crystalline cones. The marginal ommatidia from each eye view a strip that is 5 °–20 ° contralateral to the fly's longitudinal axis and that coincides with the outer boundaries of the binocular overlap.Cobalt injection into the retina demonstrates that photoreceptor axons arising from marginal ommatidia define a special area of marginal neuropil in the second visual neuropil, the medulla. Small-field neurons arising from the marginal medulla area define, in turn, a special area of marginal neuropil in the two deepest visual neuropils, the lobula and the lobula plate. From these arise local assemblies of columnar neurons that relay the marginal zones of one optic lobe to equivalent areas of the opposite lobe and to midbrain regions from which arise descending neurons destined for the the thoracic ganglia.Optically, the marginal zone of the retina represents the lateral edge of a larger area of ommatidia involved in dorsofrontal binocular overlap. This binocularity area is also represented by special arrangements of columnar neurons, which map the binocularity area of one eye into the lobula beneath the opposite eye. Another type of binocularity neuron terminates in the midbrain.These neuronal arrangements suggest two novel features of the insect optic lobes and brain: (1) Marginal neurons that directly connect the left and right optic lobes imply that each lobe receives a common input from areas of the left and right eye, specialized for detecting the pattern of polarized light. (2) Information about the e-vector pattern of sky-light polarization may be integrated with binocular and monocular pathways at the level of descending neurons leading to thoracic motor neuropil.  相似文献   

6.
The pineal gland of the mole-rat (Spalax ehrenbergi,Nehring)   总被引:1,自引:0,他引:1  
Summary A comparative investigation of the distribution of monoaminergic neurons in non-malacostracan crustaceans was performed with the histochemical fluorescence method of Falck-Hillarp.Two fluorophores were found: the more widespread of the two emits a green fluorescence; and the more sparsely distributed emits a yellow to brown-yellow fluorescence.Specific green fluorescent areas were shown to exist in the protocerebrum. The central body and the optic ganglia of the compound eye (where present) are always fluorescent. Moreover, the centre of the nauplius eye may have a green fluorophore, as in ostracods, and a neuropile area, here called the frontal area. These neuropile centres are known from ordinary histological studies of the nervous system. In addition, there are specific monoaminergic centres, such as the so-called dorsal area of phyllopods and anostracans as well as the copepod specific areas. Specific monoaminergic areas appear in the deutocerebrum and the suboesophageal ganglion where they are particularly well developed.Presumed sensory neurons in the cavity receptor organ of Artemia salina are shown to be monoaminergic. Monoaminergic sensory neurons have not been described previously in Arthropods.Presumed motor innervation of hind-gut and trunk muscles is also found, and it is concluded that in crustaceans neurons of every type (sensory, internuncial, motor) may be monoaminergic.We have enjoyed unrestricted laboratory facilities at the Department of Histology, Faculty of Medicine, and with great pleasure express our sincere thanks to Prof. Bengt Falck. — Grants from the Swedish Natural Science Research Council (2760-007), the Swedish Medical Research Council (04X-712), the Royal Swedish Academy of Science (Hierta-Retzius), the Royal Physiographic Society of Lund, and the University of Lund supported the work.  相似文献   

7.
Diopsid flies have eye stalks up to a centimeter in length, displacing the retina laterally from the rest of the head. This bizarre condition, called hypercephaly, is rare, but has evolved independently among several insect orders and is most common in flies (Diptera). Earlier studies of geometrical optics and behavior have led to various hypotheses about possible adaptive advantages of eye stalks, such as enhanced stereoscopic vision while other hypothesis suggest that eye stalks are an outcome of sexual selection. Here, we focus on how these curious distortions of head/eye morphology are accompanied by changes in the neural organization of the visual system of Cyrtodiopsis quinqueguttata. Histological examinations reveal that the optic lobes, lamina (La), medulla (Me), lobula (Lo), and lobula plate (LP) are contained entirely within the fly's eye bulbs, which are located at the distal ends of the eye stalks. We report that the organization of the peripheral visual system (La and Me) is similar to that of other Diptera (e.g., Musca and Drosophila), but deeper visual areas (Lo and LP) have been more strongly modified. For example, in both the lobula and lobula plate, fewer but larger giant collector neurons are found. The most pronounced difference is the reduction in the number of wide-field vertical cells of the lobula plate, where there are only four relatively large fibers, as opposed to 11 in Musca. The “fewer but larger” neural organization may enhance the conduction velocities of these cells, but may result in a loss of spatial resolution. At the base of the eye bulb, axon bundles collect and form a long optic nerve that extends the length of the eye stalk. We suggest that this organization of the diopsid visual system provides evidence for the costs of possessing long eye stalks. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 449–468, 1998  相似文献   

8.
We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization.  相似文献   

9.
Chiu SL  Chen CM  Cline HT 《Neuron》2008,58(5):708-719
Insulin receptor signaling has been postulated to play a role in synaptic plasticity; however, the function of the insulin receptor in CNS is not clear. To test whether insulin receptor signaling affects visual system function, we recorded light-evoked responses in optic tectal neurons in living Xenopus tadpoles. Tectal neurons transfected with dominant-negative insulin receptor (dnIR), which reduces insulin receptor phosphorylation, or morpholino against insulin receptor, which reduces total insulin receptor protein level, have significantly smaller light-evoked responses than controls. dnIR-expressing neurons have reduced synapse density as assessed by EM, decreased AMPA mEPSC frequency, and altered experience-dependent dendritic arbor structural plasticity, although synaptic vesicle release probability, assessed by paired-pulse responses, synapse maturation, assessed by AMPA/NMDA ratio and ultrastructural criteria, are unaffected by dnIR expression. These data indicate that insulin receptor signaling regulates circuit function and plasticity by controlling synapse density.  相似文献   

10.

Background

The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1), and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as reliable genotyping protocols are lacking.

Findings

We sequenced the Ap3d1 gene (HGNC GeneID: 8943) around the deletion site in the mocha mouse and revealed a 10639 bp deletion covering exon 2 to 6. Subsequently, new PCR primers were designed yielding a reliable genotyping protocol of both newborn and adult tissue. To examine the genotypes further, hippocampal neurons were cultured from mocha and control mice. Patch-clamp recordings showed that mocha neurons had a higher input resistance, and that autaptic EPSC in mocha cultures depressed faster and stronger as compared with control cultures.

Conclusion

Our study reports the sequence of the deleted part of the Ap3d1 gene in mocha mice, as well as a reliable PCR-based genotyping protocol. We cultured hippocampal neurons from control and mocha mice, and found a difference in input resistance of the neurons, and in the synaptic short-term plasticity of glutamatergic autapses showing a larger synaptic depression than controls. The described procedures may be useful for the future utilization of the mocha mouse as a model of defective vesicle biogenesis. Importantly, as genotyping by eye color is complicated in newborn mice, the designed protocol is so fast and reliable that newborn mice could rapidly be genotyped and hippocampal neurons dissociated and cultured, which is normally best done at P0-P2.  相似文献   

11.
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the layer 10 (L10) neurons in the optic tectum and respond with oscillatory bursts to visual stimulation. Our in vitro experiments show that both neuron types respond with regular spiking to somatic current injection and that the feedforward and feedback synaptic connections are excitatory, but of different strength and time course. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation. A scan through the model parameter volume reveals that Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic conductance changes. The mechanism is sensitive to the parameter values of spike-rate adaptation. In conclusion, we show that a network of regular-spiking neurons with feedforward excitation and spike-rate adaptation can generate oscillatory bursting in response to a constant input.  相似文献   

12.
Although neuropeptides are widespread throughout the central nervous system of the fruifly Drosophila, no records exist of peptidergic neurons in the first synaptic region of the visual system, the lamina. Here, we describe a novel type of neuron that has wide-field tangential arborizations just distal to the lamina neuropil and that expresses myoinhibitory peptide (MIP). The cell bodies of these neurons, designated lateral MIP-immunoreactive optic lobe (LMIo) neurons, lie anteriorly at the base of the medulla of the optic lobe. The LMIo neurons also arborize in several layers of the medulla and in the dorso-lateral and lateral protocerebrum. Since the LMIo resemble LNv clock neurons, we have investigated the relationships between these two sets of neurons by combining MIP-immunolabeling with markers for two of the clock genes, viz., Cryptochrome and Timeless, or with antisera to two peptides expressed in clock neurons, viz., pigment-dispersing factor and ion transport peptide. LMIo neurons do not co-express any of these clock neuron markers. However, branches of LMIo and clock neurons overlap in several regions. Furthermore, the varicose lamina branches of LMIo neurons superimpose those of two large bilateral serotonergic neurons. The close apposition of the terminations of MIP- and serotonin-producing neurons distal to the lamina suggests that they have the same peripheral targets. Our data indicate that the LMIo neurons are not bona fide clock neurons, but they may be associated with the clock system and regulate signaling peripherally in the visual system.  相似文献   

13.
The locust’s optic lobe contains a system of wide-field, multimodal, centrifugal neurons. Two of these cells, the protocerebrum-medulla-neurons PM4a and b, are octopaminergic. This paper describes a second pair of large centrifugal neurons (the protocerebrum-medulla-neurons PM1a and PM1b) from the brain of Locusta migratoria based on intracellular cobalt fills, electrophysiology, and immunocytochemistry. They originate and arborise in the central brain and send processes into the medulla of the optic lobe. Double intracellular recording from the same cell suggests input in the central brain and output in the optic lobe. The neurons show immunoreactivity to gamma-amino-butyric acid and its synthesising enzyme, glutamate decarboxylase. The PM1 cells are movement sensitive and show habituation to repeated visual stimulation. Bath application of octopamine causes the response to dishabituate. A very similar effect is produced by electrical stimulation of one of an octopaminergic PM4 neuron. This effect can be blocked by application of the octopamine antagonists, mianserin and phentolamine. This readily accessible system of four wide-field neurons provides a system suitable for the investigation of octopaminergic effects on the visual system at the cellular level.  相似文献   

14.
Summary Antiserum to arginine-vasopressin has been used to characterise the pair of vasopressin-like immunoreactive (VPLI) neurons in the locust. These neurons have cell bodies in the suboesophageal ganglion, each with a bifurcating dorsal lateral axon which gives rise to predominantly dorsal neuropilar branching in every ganglion of the ventral nerve cord. There are extensive beaded fibre plexuses in most peripheral nerves of thoracic and abdominal ganglia, but in the brain, the peripheral plexuses are reduced while neuropilar branching is more extensive, although it generally remains superficial. An array of fibres runs centripetally through the laminamedulla chiasma in the optic lobes. Lucifer Yellow or cobalt intracellular staining of single VPLI cells in the adult suboesophageal ganglion shows that all immunoreactive processes emanate from these two neurons, but an additional midline arborisation (that was only partially revealed by immunostaining) was also observed. Intracellularly staining VPLI cells in smaller larval instars, which permits dye to reach the thoracic ganglia, confirms that there is no similar region of poorly-immunoreactive midline arborisation in these ganglia. It has been previously suggested that the immunoreactive superficial fibres and peripheral plexuses in ventral cord ganglia serve a neurohaemal function, releasing the locust vasopressin-like diuretic hormone, F2. We suggest that the other major region of VPLI arborisation, the poorly immunoreactive midline fibres in the suboesophageal ganglion, could be a region where VPLI cells receive synaptic input. The function of the centripetal array of fibres within the optic lobe is still unclear.Abbreviations AVP arginine vasopressin - DIT dorsal intermediate tract - FLRF Phe-Leu-Arg-Phe - FMRF-amide Phe-Met-Arg-Phe-amide - LDT lateral dorsal tract - LVP lysine vasopressin - MDT median dorsal tract - MVT median ventral tract - SEM scanning electron microscopy - SOG suboesophageal ganglion - VIT ventral intermediate tract - VNC ventral nerve cord - VPLI vasopressin-like immunoreactive  相似文献   

15.
Summary The two vasopressin-like immunoreactive (VPLI) neurons of the locust, Locusta migratoria, have cell bodies in the suboesophageal ganglion and extensive arborizations throughout the CNS. One of the two peptides responsible for AVP-like immunoreactivity is a vasopressin-related peptide with putative diuretic hormone properties. These neurons also have FLRF-like immunoreactivity, probably due to the FMRF-amide-related peptide, SchistoFLRF-amide, isolated from Schistocerca gregaria. This peptide has cardioinhibitory activity and a dual potentiation/inhibition of slow motoneuron induced muscle-twitch tension. Although haemolymph AVP-like peptide titre fluctuates under various conditions, the mechanism that regulates neurohaemal release of this peptide is not understood. Very little is known of the release of SchistoFLRF-amide. We have used intracellular recording from VPLI neurons in vivo to reveal synaptic inputs that lead to changes in their level of spiking activity, and probably, release of both the AVP-like peptides and SchistoFLRF-amide. This pair of neurosecretory cells has a major, common excitatory input whose sustained rate of activity is inversely related to light intensity; VPLI spiking activity, driven by this input, is greater in the dark than in light. This input is from a pair of descending brain interneurons. Their light-sensitivity persists after ablation of compound eyes, optic lobes and ocelli, showing them to be part of an extra-ocular photoreceptor system. Attempts to record from, and individually stain, the descending neuron have been unsuccessful, although its axon location and diameter in the circumoesophageal connective have been determined. Possible locations for its cell body have been identified; one region, close to the pars intercerebralis, is known to be photosensitive in some insects. Mechanosensory stimuli also lead to brief increases in VPLI spiking activity via the descending interneuron, though this modality rapidly habituates. We detect no changes in VPLI spiking activity that consistently correlate with the osmolality of perfusion salines; such changes might have been expected from their previously proposed role in water homeostasis. Alternative roles for VPLI cells are discussed.Abbreviations AVP arginine-vasopressin - EOP extra-ocular photoreceptor - FLRF Phe-Leu-Arg-Phe - FMRF-amide Phe-Met-Arg-Phe-amide - RH relative humidity - RIA radio-immune assay - SOG suboesophageal ganglion - VPLI vasopressin-like immunoreactive  相似文献   

16.
Abstract– In the retinas of 1-day-old chickens that received an intraocular injection of N-[3H]acetylmannosamine the labelling of N-acetylneuraminic acid and CMP-N-acetylneuraminic acid increased for at least 8 h and that of gangliosides for at least 24 h after injection. In the optic tectum contralateral to the injected eye at 8 h after the intraocular injection, the labelling of gangliosides exceeded the labelling of gangliosides in the ipsilateral tectum by approx 20-fold. In the contralateral tectum the highest concentration of labelled gangliosides was in subfractions enriched in synaptosomes and synaptic plasma membranes. No significant contralateral ipsilateral differences were found in the acid soluble substances of the tectum. In the optic tectum, labelled gangliosides appeared earlier in the neuronal perikarya than in synaptosomes when the injection was intracranial. Conversely, when the injection was intraocular the labelling appeared earlier in the synaptosomes than in the neuronal perikarya. The radioactivity pattern of the optic tectum gangliosides resembled the pattern of retina gangliosides when N-[3H]acetylmannosamine was injected intraocularly, but when N-[3H]acetylmannosamine was given intracerebrally the radioactivity pattern resembled that of optic tectum gangliosides. Intraocular injection of colchicine or vinblastine did not affect the labelling of retinal gangliosides from N-[3H]acetylmannosamine injected into the same eye but prevented the appearance of labelled gangliosides in the optic tectum. In vitro the ganglioside glycosylating activity of optic tectum synaptosomes and synaptic plasma membranes was between 6 and 10-fold lower than that found in the optic tectum neuronal perikarya. These findings support the notion that the main subcellular site of synthesis of neuronal gangliosides is in the neuronal perikarya, from which they are translocated to the nerve endings.  相似文献   

17.
Summary Histological staining of wild-type and sevenless transgenic Drosophila melanogaster bearing Rh3-lacZ fusion genes permits the selective visualization of polarization-sensitive R7 and R8 photoreceptor cells located along the dorsal anterior eye margin. Diffusion of -galactosidase throughout these cells reveals that they project long axons to the two most peripheral synaptic target rows of the dorsal posterior medulla, defining a specialized marginal zone of this optic lobe. Comparison of the staining patterns of marginal and nonmarginal Rh3-lacZ-expressing photoreceptor cells in the same histological preparations suggests that the marginal cells possess morphologically specialized axons and synaptic terminals. These findings are discussed with reference to the neuroanatomy of the corresponding dorsal marginal eye and optic lobe regions of the larger dipterans Musca and Calliphora, and in relation to the ability of Drosophila to orient to polarized light.  相似文献   

18.
In the mammalian visual system, retinal ganglion cell axons terminate within the LGN in a series of alternating eye-specific layers. These layers are not present initially during development. In the cat they emerge secondarily following a prenatal period in which originally intermixed inputs from the two eyes gradually segregate from each other to give rise to the characteristic set of layers by birth. Many lines of evidence suggest that activity-dependent competitive interactions between ganglion cell axons from the two eyes for LGN neurons play an important role in the final patterning of retinogeniculate connections. Studies of the branching patterns of individual ganglion cell axons suggest that during the period when inputs from the two eyes are intermixed, axons from one eye send side branches into territory later occupied exclusively by axons from the other eye. Ultrastructural studies indicate that these branches in fact are sites of synaptic contacts, which are later eliminated since the side branches disappear as axons form their mature terminal arbors in appropriate territory. In vitro microelectrode recordings from LGN neurons indicate that they can receive convergent synaptic excitation from electrical stimulation of the optic nerves before but not after the eye-specific layers form, suggesting that at least some of the synaptic contacts seen at the ultrastructural level are functonal. Finally, experiments in which tetrodotoxin was infused intracranially during the two week period during which the eye-specific layers normally form demonstrate that it is possible to prevent, or at least delay, the formation of the layers. Accordingly, individual axons fail to develop their restricted terminal arbor branching pattern and instead branch widely throughout the LGN. These results indicate that all of the machinery necessary for synaptic function and competition is present during fetal life. Moreover, it is highly likely that neuronal activity is required for the formation of the eye-specific layers. If so, then activity would have to be present in the form of spontaneously generated action potentials, since vision is not possible at these early ages. Thus, the functioning of the retinogeniculate system many weeks before it is put to the use for which it is ultimately designed may contribute to the final patterning of connections present in the adult.  相似文献   

19.
Summary In cichlid, poecilid and centrarchid fishes luteinizing hormone releasing hormone (LHRH)-immunoreactive neurons are found in a cell group (nucleus olfactoretinalis) located at the transition between the ventral telencephalon and olfactory bulb. Processes of these neurons project to the contralateral retina, traveling along the border between the internal plexiform and internal nuclear layer, and probably terminating on amacrine or bipolar cells. Horseradish peroxidase (HRP) injected into the eye or optic nerve is transported retrogradely in the optic nerve to the contralateral nucleus olfactoretinalis where neuronal perikarya are labeled. Labeled processes leave this nucleus in a rostral direction and terminate in the olfactory bulb. The nucleus olfactoretinalis is present only in fishes, such as cichlids, poecilids and centrarchids, in which the olfactory bulbs border directly the telencephalic hemispheres. In cyprinid, silurid and notopterid fishes, in which the olfactory bulbs lie beneath the olfactory epithelium and are connected to the telencephalon via olfactory stalks, the nucleus olfactoretinalis or a comparable arrangement of LHRH-immunoreactive neurons is lacking. After retrograde transport of HRP in the optic nerve of these fishes no labeling of neurons in the telencephalon occurred. It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.  相似文献   

20.
Summary Recordings were made in the brain of Sphinx ligustri of pairs of directionally selective movement detectors, and the spike trains analysed with a computer for possible synaptic connections between two classes of movement detector. (1) Neurones with large binocular fields which arise in the medial protocerebrum and project to the medulla or lobula of one optic lobe, or to the ventral nerve cord. (2) Movement detectors which project from the lobula complex of one optic lobe to the opposite medial protocerebrum. The majority of the second group had back-to-front preferred directions over the ipsilateral eye, and of these many were weakly sensitive to stimuli to the opposite eye. The ipsilateral receptive field covered most of the eye.Optic lobe output cells with the appropriate preferred direction provide a powerful excitatory input to the binocular movement detectors centrifugal to the medulla. Each centrifugal movement detector probably receives excitatory inputs from no more than two optic lobe output cells with back-to-front preferred direction. The same set of optic lobe output neurones probably feeds several cells projecting to the medulla and lobula of both optic lobes, and, possibly, to the ventral nerve cord.Evidence was obtained that the optic lobe output cells themselves receive few excitatory inputs, and that therefore the receptive fields of their input cells are large.Two moving stimuli were presented in different areas of the receptive field. Movement through the null direction in one area inhibited the response to movement in the preferred direction in another area. This suppression was stronger in optic lobe output cells with front-to-back preferred direction than in units with back-to-front preferred direction. Thus the optic lobe output cells, or wide-field units feeding them, receive inhibitory inputs from wide-field units with the opposite preferred direction.Similar tests in which moving stimuli were presented to both eyes gave results indicating that the binocular centrifugal movement detectors may receive inhibitory inputs from movement detectors with back-to-front preferred direction. The possible functional significance of these inhibitory inputs is discussed.I am very greatful to F. A. Miles for helpful discussion and criticism. Financial support came from the U. K. Science Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号