首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basic fibroblast growth factor (FGF-2) mitogenic activities of sulfonated poly(gamma-glutamic acid) (gamma-PGA-S) were investigated with chlorate-treated L929 fibroblast culture tests. When 72% of the carboxyl groups in gamma-PGA were sulfonated (gamma-PGA-S72), cell numbers reached a maximum. The activity of gamma-PGA-S72 was higher than that of gamma-PGA and synthetic heparinoids and was almost comparable to that of heparin. Cytotoxicity of gamma-PGA-S72 was not observed, regardless of the degree of sulfonation. FGF-2-protective effects of gamma-PGA-S72 against acid and thermal inactivation were also evaluated, and gamma-PGA-S72 showed higher FGF-2-protective effects in comparison to nonsulfonated gamma-PGA. The steric structures of various sulfonated gamma-PGA-Ss were analyzed by molecular modeling (molecular orbital method (MOPAC)) and indicated that gamma-PGA-Ss are helical in vacuo. Results from MOPAC and the molecular mechanics method (MM2) demonstrated that electrostatic interactions can take place between sulfonic and carboxyl groups of gamma-PGA-S and basic amino acid residues in FGF-2. gamma-PGA-S72 can interact with FGF-2 strongly.  相似文献   

2.
In the study, chitosan (CS) was conjugated with trimethyl groups for the synthesis of N-trimethyl chitosan (TMC) polymers with different degrees of quaternization. Nanoparticles (NPs) self-assembled by the synthesized TMC and poly(gamma-glutamic acid) (gamma-PGA, TMC/gamma-PGA NPs) were prepared for oral delivery of insulin. The loading efficiency and loading content of insulin in TMC/gamma-PGA NPs were 73.8 +/- 2.9% and 23.5 +/- 2.1%, respectively. TMC/gamma-PGA NPs had superior stability in a broader pH range to CS/gamma-PGA NPs; the in vitro release profiles of insulin from both test NPs were significantly affected by their stability at distinct pH environments. At pH 7.0, CS/gamma-PGA NPs became disintegrated, resulting in a rapid release of insulin, which failed to provide an adequate retention of loaded insulin, while the cumulative amount of insulin released from TMC/gamma-PGA NPs was significantly reduced. At pH 7.4, TMC/gamma-PGA NPs were significantly swelled and a sustained release profile of insulin was observed. Confocal microscopy confirmed that TMC40/gamma-PGA NPs opened the tight junctions of Caco-2 cells to allow the transport of insulin along the paracellular pathway. Transepithelial-electrical-resistance measurements and transport studies implied that CS/gamma-PGA NPs can be effective as an insulin carrier only in a limited area of the intestinal lumen where the pH values are close to the p K a of CS. In contrast, TMC40/gamma-PGA NPs may be a suitable carrier for transmucosal delivery of insulin within the entire intestinal tract.  相似文献   

3.
A series of pH-sensitive composite hydrogel beads composed of chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate (CTS-g-PAA/APT/SA) was prepared as drug delivery matrices crosslinked by Ca2+ owing to the ionic gelation of SA. The structure and surface morphology of the composite hydrogel beads were characterized by FTIR and SEM, respectively. pH-sensitivity of these composite hydrogels beads and the release behaviors of drug from them were investigated. The results showed that the composite hydrogel beads had good pH-sensitivity. The cumulative release ratios of diclofenac sodium (DS) from the composite hydrogel beads were 3.76% in pH 2.1 solution and 100% in pH 6.8 solutions within 24 h, respectively. However, the cumulative release ratio of DS in pH 7.4 solution reached 100% within 2 h. The DS cumulative release ratio reduced with increasing APT content from 0 to 50 wt%. The drug release was swelling-controlled at pH 6.8.  相似文献   

4.
A novel water-soluble chitosan derivative [N-(2-carboxybenzyl)chitosan, CBCS] was synthesized. The chemical structure of CBCS was characterized by FTIR, (1)H NMR and UV spectroscopies. The degree of substitution (DS) of N-2-carboxybenzyl was determined by colloid titration. In different pH buffer solutions, the swelling characteristics of hydrogels based on CBCS (CBCSG) prepared by crosslinking with glutaraldehyde have been studied. Results showed that the swelling ratio (SR) of CBCSG decreased with an increase of the amount of glutaraldehyde, and that CBCSG swelled more significantly in alkaline solution than in acidic medium, showing the lowest SR at pH5.0. The SR of CBCSG increased with the raising of the DS of the N-2-carboxybenzyl group in alkaline solution, but no significant change was observed in an acidic environment. CBCSG showed swelling reversibility when alternately soaked in pH1.0 and 7.4 buffer solutions. Release profiles of fluorouracil (5-FU), a poorly water-soluble drug, from CBCSG were studied under both simulated gastric and intestinal pHconditions. The release was much quicker in pH7.4 buffer than in pH1.0 solution. Results indicated that CBCS could be a potential pH-sensitive carrier for colon-specific drug delivery system.  相似文献   

5.
We studied the pH-sensitive indomethacin (IND) delivery system using pullulan. Hydrophobic pullulan acetate was prepared by chemical modification of hydrophilic pullulan and pullulan acetate microsphere was made by a solvent evaporation method. The size of microspheres was below 5 μm, and the drug loading efficiencies of microspheres were approximately 78 and 65% at the initial amount of drug 40 and 80 mg, respectively. The microsphere showed pH-sensitive swelling behavior in PBS buffer. After 15 hrs, the swelling of the microsphere at pH 7.4 was approximately 20 times greater than that at pH1.2. The pH of the medium significantly influenced on thein vitro release rate. The released amount of drug at pH 7.2 was approximately 90 times greater than that at pH 1.2. The shape of microspheres at pH 1.2 were maintained sphere forms, but at pH 7.4 were disintegrated. The pH-sensitive IND release pattern was due both to the pH-sensitive diffusion of IND from the microspheres and to the release of the drug from the surface which underwent disintegration after swelling, due to the chemical composition of the microspheres and the pH of the release media.  相似文献   

6.
Nonenzymatic deamidation rates for 52 glutaminyl and 52 asparaginyl pentapeptides in pH 7.4, 37.0 degrees C. 0.15 m Tris-HCl buffer have been determined by direct injection mass spectrometry. These and the previously reported 306 asparginyl rates have been combined in a self-consistent model for peptide deamidation. This model depends quantitatively upon peptide structure and involves succinimide, glutarimide and hydrolysis mechanisms. The experimental values and suitable interpolated values have been combined to provide deamidation rate values in pH 7.4, 37.0 degrees C. 0.15 m Tris-HCl buffer for the entire set of 648 single-amide permutations of ordinary amino acid residues in GlyXxxAsnYyyGly and GlyXxxGlnYyyGly. Thus, knowledge about sequence-dependent deamidation in peptides is extended to include very long deamidation half-times in the range of 2-50 years.  相似文献   

7.
Metallothionein (MT) isoforms from various liver tissues were separated with capillary zone electrophoresis (CZE) using a polyacrylamide-coated tube at neutral pH. The electrophoresis was performed on MT-1 and MT-2 purified from mouse, rat, rabbit and human livers. The retention times of mouse and rat MT-1 coincided, while the retention times of rabbit and human MT-1 were longer. The retention times of MT-2 purified from the four sources were the same. MT-1 and MT-2 separated more definitely with N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES)-Tris buffer (25 mM, pH 7.4) than with N-tris(hydroxymethyl)methyl-3-aminopropane sulfonic acid (TAPS)-Tris buffer (25 mM, pH 7.7) or with N-(2-acetamido)iminodiacetic acid (ADA)-Tris buffer (25 mM, pH 7.4). In addition, liver MT isoforms prepared from Zn- or Cd-administered mice could be separated.  相似文献   

8.
Rat liver malate dehydrogenase (decarboxylating) (NADP) ((L-malate: NADP) oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) was purified and crystallized from medium containing 30 mM Tris-HCl buffer (pH 7.7), 5 mM MgCl2 and 2 mM 2-mercaptoethanol. The enzyme formed rhomboid crystals free from coenzyme, and appeared homogeneous on isoelectric focusing. The crystalline enzyme had an isoelectric point of pH 6.3. Amino acid analysis showed that it contained more acidic amino acids than basic ones.  相似文献   

9.
This paper reports on the synthesis, characterisation, and efficiency of a new intravenous conjugate of amphotericin B (AMB). Twelve molecules of AMB were attached to block copolymer poly(ethylene glycol)-b-poly(L-lysine) via pH-sensitive imine linkages. In vitro drug release studies demonstrated the conjugate (M(w)=26,700) to be relatively stable in human plasma and in phosphate buffer (pH 7.4, 37 degrees C). Controlled release of AMB was observed in acidic phosphate buffer (pH 5.5, 37 degrees C) with the half-life of 2 min. The LD(50) value determined in vivo (mouse) is 45 mg/kg.  相似文献   

10.
Jung J  Lee IH  Lee E  Park J  Jon S 《Biomacromolecules》2007,8(11):3401-3407
We report the development and characterization of pH-sensitive poly(2-tetrahydropyranyl methacrylate) [poly(THPMA)] nanospheres and demonstrate their feasibility as an effective drug delivery vehicle. Poly(THPMA) nanospheres were prepared using either the double emulsion or single emulsion method for the encapsulation of, respectively, water soluble (rhodamine B) or organic soluble (paclitaxel) payloads. The resulting nanospheres showed pH-dependent dissolution behavior, resulting in significant morphologic changes and loss of nanoparticle mass under mild acidic conditions (pH 5.1) with a half-life of 3.3 days, as compared to physiologic condition (pH 7.4) with a half-life of 6.2 days. The in vitro drug release profile of the paclitaxel-loaded poly(THPMA) nanospheres revealed that the rate of drug release in pH 5.1 acetate buffer was relatively faster than that in pH 7.4 HEPES buffer. Furthermore, poly(THPMA) nanospheres showed lower cytotoxicity and higher cellular uptake as compared to the FDA-approved PLGA-based nanospheres currently in clinical practice.  相似文献   

11.
The ligand binding and aggregation behavior of cow's milk folate binding protein depends on hydrogen ion concentration and buffer composition. At pH 5.0, the protein polymerizes in Tris-HCl subsequent to ligand binding. No polymerization occurs in acetate, and binding is markedly weaker in acetate or citrate buffers as compared to Tris-HCl. Polymerization of ligand-bound protein was far more pronounced at pH 7.4 as compared to pH 5.0 regardless of buffer composition. Binding affinity increased with decreasing concentration of protein both at pH 7.4 and 5.0. At pH 5.0 this effect seemed to level off at a protein concentration of 10–6 M which is 100–1000 fold higher than at pH 7.4. The data can be interpreted in terms of complex models for ligand binding systems polymerizing both in the absence or presence of ligand (pH 7.4) as well as only subsequent to ligand binding (pH 5.0).  相似文献   

12.
Bacillus licheniformis ATCC 9945A was grown on Medium E in batch fermentations in which the pH was maintained at 5.5., 6.5, 7.4, and 8.25. The effects of pH on cell growth, carbon source utilization, and gamma-polyglutamic acid (gamma-PGA) production, molecular weight, and polymer stereochemistry were determined. The gamma-PGA yield was highest (15 g/L, 96 h growth time) at pH 6.5. The increase in gamma-PGA formation at pH 6.5 corresponded with a relatively high specific production rate at high gamma-PGA concentration (0.09 h(-1), approximately 15 g/L gamma-PGA). In contrast, the specific gamma-PGA production rates at fermentor pH values of 5.5 and 7.4 decreased significantly for gamma-PGA fermentor yields > approximately 5 g/L. Interestingly, alteration of the medium pH had little to no significant effects on the product quality as measured by stereochemical composition and molecular weight. While glutamate and glycerol utilization were similar as a function of pH, citrate consumption increased at pH 6.5, indicating that the formation of gamma-PGA from citrate at pH 6.5 was of increased importance. The effect of aeration was evaluated by increasing the agitation speed (250 to 800 rpm) and aeration rate (0.5 to 2.0 L/min) at pH 6.5, the pH of maximal gamma-PGA production. Increased aeration resulted in doubling of the cell dry weights (2 to 4 g/L), increasing gamma-PGA yields (6.3 to 23 g/L by 48 h) and increasing in the maximum gamma-PGA-specific production rate (0.09 to 0.11 h(-1)). Other effects of increased agitation included a rapid depletion of glutamate and citrate (by 50 h) and a decrease in product molecular weight. Despite the increase in agitation and aeration, oxygen limitation of the culture was not avoided, because the partial pressure decreased to <1.0% by 29 h. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
The mechanism of increasing effect of CuCl2 on specific [3H]cimetidine binding was examined in brain membranes of rats. CuCl2-Induced elevation of [3H]cimetidine binding was high in Krebs-Ringer solution (pH 7.4) compared to those in 50 mM Na, K-phosphate buffer (pH 7.4) and in 50 mM Tris-HCl buffer (pH 7.4). CaCl2 (5–50 mM) inhibited effect of CuCl2, but NaCl (25–200 mM), KCl (5–100 mM) or MgCl2 (5–50 mM) did not. CuCl2 (50 μM) elevated 9.3- and 2.5-fold the binding in phosphate- and Tris—HCl buffer, respectively. EDTA-2Na decreased the binding elevated by 50 μM CuCl2 in phosphate buffer to the similar level in Tris-HCl buffer, whereas it did not affect those in Tris-HCl buffer. The absorption spectra of cimetidine and CuCl2 mixture showed a peak at 317 nm in phosphate buffer that was not observed in Tris-HCl buffer. It is suggested that cimetidine-Cu2+ chelate complex could be formed in phosphate buffer, resulting in higher amount of binding in phosphate buffer than in Tris-HCl buffer. PdCl2 also caused a marked elevation in [3H]cimetidine binding, seeming to be due to formation of cimetidine-Pd2+ chelate complex. There were two types of [3H]cimetidine binding in the presence of 20 nM PdCl2: high affinity binding with Kd = 0.7 ± 0.1 nM and low affinity binding with Kd = 44.3 ± 3.0 nM. It is suggested that cimetidine-Cu2+ complex binds to cimetidine binding sites in brain with higher affinity than cimetidine alone.  相似文献   

14.
The essential role of tyrosine residue(s) of cardiotoxin II in the biological activity of the toxin was evaluated using N-bromosuccinimide. N-bromosuccinimide effected oxidation of the tyrosine residues in cardiotoxin II with enhancement in absorbance at 260 nm. The influence of various solvent media such as acetate-formate buffer (pH 4.0), 0.01 N H2SO4 (pH 2.0) and Tris-HCl buffer (pH 8.5) on oxidation of tyrosine residues was exa mined. In comparison with 0.01 N H2S O4, acetate-formate buffer could prevent secondary oxidations as revealed by lower consumption of oxidant, N-bromosuccinimide, to achieve oxidation. In Tris-HCl buffer oxidation of tyrosine did not take place effectively. N-iodo-succinimide caused only limited oxidation as evident from minor increase in absorbance at 260 nm. N-chlorosuccinimide was completely ineffective. Oxidation of cardiotoxin II with 3.75 equivalents of N-bromosuccinimide tyrosine residue led to complete loss of lethal activity. However, the derivative retained the ability to protect bacterial protoplasts from lysis in solutions of low tonicity. Unlike cardiotoxin II oxidized with N-chlorosuccinimide (50 equivalents/mol of toxin) which retained lethal activity as well as the ability to protect protoplasts from lysis, performic acid-oxidized toxin had lost both the activities.  相似文献   

15.
Acryloyl guar gum (AGG) and its hydrogel materials were synthesized for use as carriers and slow release devices of two pro-drugs, l-tyrosine and 3,4-dihydroxy phenylalanine (l-DOPA). To evaluate their structure-properties relationship, these were characterized by scanning electron micrography (SEM), FTIR spectroscopy and swelling studies. The hydrogel materials responded to the change of pH of the swelling medium, and exhibited reversible transitions in 0.9% saline solution. These were loaded with two pro-drugs, and their cumulative release behavior was studied at pH 2.2 and pH 7.4. The hydrogel materials exhibited structure-property relationship in the release of these pro-drugs. The % cumulative release of l-tyrosine was the maximum from the AGG-g-poly(methacrylic acid), while the maximum release of l-DOPA was observed from AGG-g-poly(AAc) in both the media. On the other hand, the AGG-g-poly(2-hydroxyethyl methacrylate) and AGG-g-poly(2-hydroxypropyl methacrylate) retained 42.33% and 49.05% of the drug even after 12 h.  相似文献   

16.
When rat red cell ghosts were incubated with 0.1-0.5 mM CdCl2 in 10 mM Tris-HCl (pH 7.4) at 37 degrees C for 30 min, they became irregular in shape and released small vesicles. The release of vesicles was dependent on the incubation temperature and Cd2+ concentration. The maximum release occurred at 37 degrees C in the presence of 0.2 mM Cd2+. The protein composition of Cd2+-induced vesicles was similar to that of the vesicles released from ATP-depleted red cells. Upon incubation with 0.1-0.2 mM Cd2+, more than 90% of the Cd2+ added to the incubation buffer was recovered in ghosts and 15-20% of the ghost Cd2+ was located on the cytoskeletons prepared by washing ghosts with 0.5% Triton X-100 solution containing 0.1 M KCl and 10 mM Tris-HCl (pH 7.4). Moreover, the cytoskeletons prepared from Cd2+-treated ghosts markedly contained cell membrane proteins, bands 2.1, 3, 4.2 and 4.5, and glycophorins. The association of bands 3 and 4.2 with cytoskeletons increased with increasing concentrations of Cd2+ added to the incubation buffer and saturated at 0.2 mM Cd2+. The solubilization of cytoskeletal proteins, bands 1, 2 and 5, from ghosts at low ionic strength was almost completely suppressed by preincubation of ghosts with 0.1 mM Cd2+. HgCl2, PbCl2 and ZnCl2 at 0.2 mM each also produced an increased association of cell membrane proteins with cytoskeletons, whereas CaCl2 and MgCl2 did not.  相似文献   

17.
We have developed a simple and rapid method for detecting the enzyme myristoyl-CoA:protein N-myristoyl transferase. The enzyme catalyzes the transfer of the myristoyl moiety of myristoyl-CoA to the amino-terminal glycine residue of a peptide (protein). Incorporation of the [14C]myristate into the peptide is quantified after separation of the [14C]myristoyl-peptide from unreacted [14C]myristoyl-CoA by selective adsorption of [14C]myristoyl-CoA on acidic alumina. Optimal assay concentrations were 200 microM synthetic peptide, 1 microM [14C]myristoyl-CoA, 10 mM Tris-HCl/1 mM dithiothreitol/0.1 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid/aprotinin (10 micrograms/ml) buffer, pH 7.4, and 1-10 micrograms protein.  相似文献   

18.
pH-sensitive hydrogel based on a novel photocross-linkable copolymer   总被引:3,自引:0,他引:3  
A pH sensitive hydrogel has been prepared by a UV irradiation technique. Starting polymer was the PHM (poly hydroxyethylaspartamide methacrylated) obtained from polyaspartamide (PHEA) partially derivatized with methacrylic anhydride (MA). This new copolymer has been further derivatized with succinic anhydride (SA) to obtain PHM-SA that has been cross-linked by UV irradiation to form a pH sensitive hydrogel. The network, recovered after washing as a powder, has been been characterized by FT-IR spectrophotometry and particle size distribution analysis. Moreover, to have information about water affinity of the prepared sample, swelling measurements have been carried out in aqueous media mimicking biological fluids. The possibility to employ the prepared hydrogel as a pH-sensitive drug delivery system (DDS) has been investigated. In particular, ibuprofen ((S)(+)4-isobutyl-alpha-methylphenyl-acetic acid), chosen as a model drug, has been entrapped into the PHM-SA hydrogel, and in vitro release studies have showed that its release rate depends on different swelling of the network as a function of the environmental pH.  相似文献   

19.
We synthesized five maleic acid amide derivatives (maleic, citraconic, cis-aconitic, 2-(2′-carboxyethyl) maleic, 1-methyl-2-(2′-carboxyethyl) maleic acid amide), and compared their degradability for the future development of pH-sensitive biomaterials with tailored kinetics of the release of drugs, the change of charge density, and the degradation of scaffolds. The degradation kinetics was highly dependent upon the substituents on the cis-double bond. Among the maleic acid amide derivatives, 2-(2′-carboxyethyl) maleic acid amide with one carboxyethyl and one hydrogen substituent showed appropriate degradability at weakly acidic pH, and the additional carboxyl group can be used as a pH-sensitive linker.  相似文献   

20.
Factors of the shape change of human erythrocytes induced with lidocaine   总被引:1,自引:0,他引:1  
We studied the molecular mechanism of the shape change of erythrocytes with a local anesthetic, lidocaine. The shape of human erythrocytes changed from discocytes to stomatocytes in the presence of lidocaine when ATP was present. But, the shape of resealed cells which were prepared with 10 mM Tris-HCl buffer (pH 7.4) containing 2 mM ATP-MgCl2 and various substances was not changed from discocytes to stomatocytes with lidocaine. When intact cells and resealed cells which were prepared with various concentrations of Tris-HCl buffer (pH 7.4) were incubated with various concentrations of lidocaine and their membrane proteins were analyzed by SDS-PAGE, the densities of bands 62K, 28K and 22K depended on lidocaine concentration: in particular, that of band 28K changed remarkably. These membranous 62K-, 28K- and 22K-proteins agreed with cytoplasmic 62K-, 28K- and 22K-proteins in molecular weight. We propose that not only ATP but also the 62K-, 28K- and 22K-proteins in the cytoplasm are concerned with the shape change of human erythrocytes induced with lidocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号