首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K Tanizawa  E W Miles 《Biochemistry》1983,22(15):3594-3603
Inactivation of the beta 2 subunit and of the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli by the arginine-specific dicarbonyl reagent phenylglyoxal results from modification of one arginyl residue per beta monomer. The substrate L-serine protects the holo beta 2 subunit and the holo alpha 2 beta 2 complex from both inactivation and arginine modification but has no effect on the inactivation or modification of the apo forms of the enzyme. This result and the finding that phenylglyoxal competes with L-serine in reactions catalyzed by both the holo beta 2 subunit and the holo alpha 2 beta 2 complex indicate that L-serine and phenylglyoxal both bind to the same essential arginyl residue in the holo beta 2 subunit. The apo beta 2 subunit is protected from phenylglyoxal inactivation much more effectively by phosphopyridoxyl-L-serine than by either pyridoxal phosphate or pyridoxine phosphate, both of which lack the L-serine moiety. The phenylglyoxal-modified apo beta 2 subunit binds pyridoxal phosphate and the alpha subunit but cannot bind L-serine or L-tryptophan. We conclude that the alpha-carboxyl group of L-serine and not the phosphate of pyridoxal phosphate binds to the essential arginyl residue in the beta 2 subunit. The specific arginyl residue in the beta 2 subunit which is protected by L-serine from modification by phenyl[2-14C]glyoxal has been identified as arginine-148 by isolating a labeled cyanogen bromide fragment (residues 135-149) and by digesting this fragment with pepsin to yield the labeled dipeptide arginine-methionine (residues 148-149). The primary sequence near arginine-148 contains three other basic residues (lysine-137, arginine-141, and arginine-150) which may facilitate anion binding and increase the reactivity of arginine-148. The conservation of the arginine residues 141, 148, and 150 in the sequences of tryptophan synthase from E. coli, Salmonella typhimurium, and yeast supports a functional role for these three residues in anion binding. The location and role of the active-site arginyl residues in the beta 2 subunit and in two other enzymes which contain pyridoxal phosphate, aspartate aminotransferase and glycogen phosphorylase, are compared.  相似文献   

2.
The rate of quenching of the fluorescence of pyridoxal 5'-phosphate in the active site of the beta 2 subunit of tryptophan synthase from Escherichia coli was measured to estimate the accessibility of the coenzyme to the small molecules iodide and acrylamide. The alpha subunit and the substrate L-serine substantially reduced the quenching rate. For iodide, the order of decreasing quenching was: Schiff's base of N alpha-acetyl-lysine with pyridoxal 5'-phosphate greater than holo beta 2 subunit greater than holo alpha 2 beta 2 complex approximately equal to holo beta 2 subunit + L-serine greater than holo alpha 2 beta 2 complex + L-serine. The coenzyme in the beta 2 subunit is apparently freely accessible to both iodide and acrylamide (kappa approximately equal to 2 X 10(9) M-1 s-1), but the alpha subunit and L-serine decrease the rate by factors of 2-5. Quenching of the fluorescence of the single tryptophan residue of the beta 2 subunit revealed that the apo and holo forms exist in different states, whereas the alpha subunit stabilizes a third conformation. As the alpha subunit binds to the beta 2 subunit, the tryptophan residue, which is within 2.2 nm of the active site of the beta 2 subunit, probably rotates with respect to the plane of the ring of the coenzyme, such that fluorescence energy transfer from tryptophan to pyridoxal phosphate is greatly reduced. The alpha subunit strongly protects the active-site ligand indole propanol phosphate from quenching with acrylamide, consistent with the active site being deep in a cleft in the protein. Iodide induces dissociation of the holo alpha 2 beta 2 complex [E. W. Miles & M. Moriguchi (1977) J. Biol. Chem. 252, 6594-6599]. The effect of iodide on the fluorescence properties of holo alpha 2 beta 2 complex allows us to estimate an upper limit for the dissociation constant for the alpha 2 beta 2 complex of 10(-8) M, in the absence of iodide.  相似文献   

3.
To probe the structural and functional roles of active-site residues in the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium, we have determined the effects of mutation of His(86) in the beta subunit. His(86) is located adjacent to beta subunit Lys(87), which forms an internal aldimine with the pyridoxal phosphate and catalyzes the abstraction of the alpha-proton of L-serine. The replacement of His(86) by leucine (H86L) weakened pyridoxal phosphate binding approximately 20-fold and abolished the circular dichroism signals of the bound coenzyme and of a reaction intermediate. Correlation of these results with previous crystal structures indicates that beta-His(86) plays a structural role in binding pyridoxal phosphate and in stabilizing the correct orientation of pyridoxal phosphate in the active site of the beta subunit. The H86L mutation also altered the pH profiles of absorbance and fluorescence signals and shifted the pH optimum for the synthesis of L-tryptophan from pH 7.5 to 8.8. We propose that the interaction of His(86) with the phosphate of pyridoxal phosphate and with Lys(87) lowers the pK(a) of Lys(87) in the wild-type alpha(2)beta(2) complex and thereby facilitates catalysis by Lys(87) in the physiological pH range.  相似文献   

4.
This study explores the catalytic and allosteric roles of a flexible loop in tryptophan synthase. Trypsin is known to cleave the tryptophan synthase alpha 2 beta 2 complex in an alpha subunit loop at Arg-188. Cleavage yields an active "nicked" alpha 2 beta 2 derivative. The new results provide evidence that the alpha subunit loop serves two important roles: substrate binding and communicating the effects of substrate binding to the beta subunit. A role for the loop in substrate binding is supported by our finding that addition of a substrate analogue of the alpha subunit, alpha-glycerol 3-phosphate, decreases the rate of cleavage by trypsin. An allosteric role for the loop is supported by the finding although the native alpha 2 beta 2 complex is strongly inhibited by alpha-glycerol 3-phosphate, the nicked alpha 2 beta 2 complex is desensitized to this inhibition. The time course of proteolysis in the presence and absence of alpha-glycerol 3-phosphate is followed by sodium dodecyl sulfate-gel electrophoresis and by assays of activity in the presence and absence of alpha-glycerol 3-phosphate. We use spectroscopic measurements of the pyridoxal phosphate-L-tryptophan intermediates at the active site of the beta subunit to determine the affinity of the native and nicked enzymes for L-tryptophan and alpha-glycerol 3-phosphate. Although cleavage alters the equilibrium distribution of intermediates and reduces the affinity for alpha-glycerol 3-phosphate, it has little effect on the affinity for amino acids bound to the beta subunit. We conclude that the loop in the alpha subunit is important for ligand binding and for communicating the effects of ligand binding from the alpha subunit to the beta subunit in the alpha 2 beta 2 complex.  相似文献   

5.
Arginine 179 of the alpha subunit of tryptophan synthase of Salmonella typhimurium was changed to leucine by site-directed mutagenesis. The mutant alpha subunit was expressed in S. typhimurium, purified and crystallized as the alpha 2 beta 2 complex, and characterized by kinetic studies under steady-state reaction conditions. The rate of cleavage of indole 3-glycerol phosphate (alpha reaction) is reduced by 60% in the mutant alpha 2 beta 2 complex, whereas the rate of L-tryptophan synthesis from indole and L-serine (beta reaction) is unchanged. Thus, arginine 179 is not obligatory for catalysis, for binding of indole 3-glycerol phosphate, or for interaction of the alpha and beta 2 subunits. However, changing arginine 179 to leucine does have striking effects on ligand-dependent properties of this multienzyme complex. Ligands of the alpha subunit (DL-alpha-glycerophosphate and indole 3-propanol phosphate) which strongly inhibit the beta reaction of the native alpha 2 beta 2 complex have a slight stimulatory effect on the beta reaction of the mutant alpha 2 beta 2 complex. Likewise, L-serine, a ligand of the beta subunit which produces a 5-fold reduction in the Km for the alpha ligand indole 3-glycerol phosphate in the native alpha 2 beta 2 complex, has no effect on the mutant alpha 2 beta 2 complex. These results suggest that arginine 179 of the alpha subunit plays a role in the reciprocal transmission of substrate-induced conformational changes which occur between native alpha and beta 2 subunits in the alpha 2 beta 2 complex.  相似文献   

6.
The origin of reaction and substrate specificity and the control of activity by protein-protein interaction are investigated using the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. We have compared some spectroscopic and kinetic properties of the wild type beta subunit and five mutant forms of the beta subunit that have altered catalytic properties. These mutant enzymes, which were engineered by site-directed mutagenesis, have single amino acid replacements in either the active site or in the wall of a tunnel that extends from the active site of the alpha subunit to the active site of the beta subunit in the alpha 2 beta 2 complex. We find that the mutant alpha 2 beta 2 complexes have altered reaction and substrate specificity in beta-elimination and beta-replacement reactions with L-serine and with beta-chloro-L-alanine. Moreover, the mutant enzymes, unlike the wild type alpha 2 beta 2 complex, undergo irreversible substrate-induced inactivation. The mechanism of inactivation appears to be analogous to that first demonstrated by Metzler's group for inhibition of two other pyridoxal phosphate enzymes. Alkaline treatment of the inactivated enzyme yields apoenzyme and a previously described pyridoxal phosphate derivative. We demonstrate for the first time that enzymatic activity can be recovered by addition of pyridoxal phosphate following alkaline treatment. We conclude that the wild type and mutant alpha 2 beta 2 complexes differ in the way they process the amino acrylate intermediate. We suggest that the wild type beta subunit undergoes a conformational change upon association with the alpha subunit that alters the reaction specificity and that the mutant beta subunits do not undergo the same conformational change upon subunit association.  相似文献   

7.
《The Journal of cell biology》1993,123(4):1017-1025
The alpha 6 beta 1 integrin is expressed on the macrophage surface in an inactive state and requires cellular activation with PMA or cytokines to function as a laminin receptor (Shaw, L. M., J. M. Messier, and A. M. Mercurio. 1990. J. Cell Biol. 110:2167-2174). In the present study, the role of the alpha 6 subunit cytoplasmic domain in alpha 6 beta 1 integrin activation was examined. The use of P388D1 cells, an alpha 6-integrin deficient macrophage cell line, facilitated this analysis because expression of either the alpha 6A or alpha 6B subunit cDNAs restores their activation responsive laminin adhesion (Shaw, L. S., M. Lotz, and A. M. Mercurio. 1993. J. Biol. Chem. 268:11401-11408). A truncated alpha 6 cDNA, alpha 6-delta CYT, was constructed in which the human cytoplasmic domain sequence was deleted after the GFFKR pentapeptide. Expression of this cDNA in P388D1 cells resulted in the surface expression of a chimeric alpha 6-delta CYT beta 1 integrin that was unable to mediate laminin adhesion or increase this adhesion in response to PMA under normal conditions, i.e., in medium that contained physiological concentrations of Ca++ and Mg++. The alpha 6A-delta CYT transfectants adhered to laminin, however, when Ca++/Mg++ was replaced with 150 microM Mn++. We also assessed the role of serine phosphorylation in the regulation of alpha 6A beta 1 integrin function by site-directed mutagenesis of the two serine residues present in the alpha 6A cytoplasmic domain because this domain is phosphorylated on serine residues in response to stimuli that activate the laminin receptor function of alpha 6 A beta 1. Point mutations were introduced in the alpha 6A cDNA that changed either serine residue #1064 (M1) or serine residue #1071 (M2) to alanine residues. In addition, a double mutant (M3) was constructed in which both serine residues were changed to alanine residues. P388D1 transfectants which expressed these serine mutations adhered to laminin in response to PMA to the same extent as cells transfected with wild-type alpha 6A cDNA. These findings provide evidence for a novel mode of integrin regulation that is distinct from that reported for other regulated integrins (O'Toole, T. E., D. Mandelman, J. Forsyth, S. J. Shattil, E. F. Plow, and M. H. Ginsberg. 1991. Science (Wash. DC). 254:845-847. Hibbs, M. L., H. Xu, S. A. Stacker, and T. A. Springer. 1991. Science (Wash. DC). 251:1611-1613), and they demonstrate that serine phosphorylation of the alpha 6A cytoplasmic domain is not involved in this regulation.  相似文献   

8.
J M Sparks  T O Baldwin 《Biochemistry》2001,40(50):15436-15443
Bacterial luciferase catalyzes the conversion of FMNH(2), a long-chain aliphatic aldehyde, and molecular oxygen to FMN, the corresponding carboxylic acid, and H(2)O with the emission of light. The light-emitting species is an enzyme-bound excited state flavin. The enzyme is a heterodimer (alphabeta) of homologous subunits each with an (beta/alpha)(8) barrel structure. A portion of the loop in the alpha subunit that connects beta strand 7 to alpha helix 7 is disordered in the crystal structure. To test the hypothesis that this loop closes over the active site during catalysis and protects the active site from bulk solvent, a mutant was constructed in which the 29 residues that are disordered in the 2.4 A crystal structure were deleted. Deletion of this loop results in a heterodimer with a subunit equilibrium dissociation constant of 1.32 +/- 1.25 microM, whereas the wild-type heterodimer shows no measurable subunit dissociation. This mutant retains its ability to bind substrate flavin and aldehyde with wild-type affinity and can carry out the chemistry of the bioluminescence reaction with nearly wild-type efficiency. However, the bioluminescent quantum yield of the reaction is reduced nearly 2 orders of magnitude from that of the wild-type enzyme.  相似文献   

9.
Y X Fan  P McPhie  E W Miles 《Biochemistry》1999,38(24):7881-7890
To characterize the conformational transitions that regulate the activity and specificity of the tryptophan synthase alpha 2 beta 2 complex, we have determined some effects of low concentrations of guanidine hydrochloride (GuHCl) and of urea on functional properties. We report the novel finding that GuHCl at low concentrations (0. 02-0.08 M) is a cation activator of the tryptophan synthase alpha 2 beta 2 complex. Molecular modeling studies show that GuH+ could bind at a previously identified cation binding site in the tryptophan synthase beta subunit. Addition of increasing concentrations of GuHCl has strikingly different effects on the rates of different reactions with L-serine or beta-chloro-L-alanine in the presence or absence of indole. Spectroscopic studies demonstrate that GuHCl alters the equilibrium distribution of pyridoxal 5'-phosphate intermediates formed in reactions at the active site of the beta subunit. Data analysis shows that GuHCl binds preferentially with the conformer of the enzyme that predominates when the aldimine of L-serine is formed and shifts the equilibrium in favor of this conformer. These results provide evidence that GuHCl exerts dual effects on tryptophan synthase as a cation, stimulating activity, and as a chaotropic agent, altering the distribution of conformational states that exhibit different reaction specificities. Our finding that the nonionic urea stabilizes the aldimine of L-serine in the presence, but not in the absence, of NaCl shows that cation binding plays an important role in the conformational transitions that regulate activity and the transmission of allosteric signals between the alpha and beta sites.  相似文献   

10.
F(1)-ATPase is a rotary motor protein, and ATP hydrolysis generates torque at the interface between the gamma subunit, a rotor shaft, and the alpha(3)beta(3) substructure, a stator ring. The region of conserved acidic "DELSEED" motif of the beta subunit has a contact with gamma subunit and has been assumed to be involved in torque generation. Using the thermophilic alpha(3)beta(3)gamma complex in which the corresponding sequence is DELSDED, we replaced each residue and all five acidic residues in this sequence with alanine. In addition, each of two conserved residues at the counterpart contact position of gamma subunit was also replaced. Surprisingly, all of these mutants rotated with as much torque as the wild-type. We conclude that side chains of the DELSEED motif of the beta subunit do not have a direct role in torque generation.  相似文献   

11.
Alanine-scanning mutagenesis and the whole cell voltage clamp technique were used to investigate the function of the extracellular loop between the second and third transmembrane domains (TM2-TM3) of the gamma-aminobutyric acid type A receptor (GABA(A)-R). A conserved arginine residue in the TM2-TM3 loop of the GABA(A)-R alpha(2) subunit was mutated to alanine, and the mutant alpha(2)(R274A) was co-expressed with wild-type beta(1) and gamma(2S) subunits in human embryonic kidney (HEK) 293 cells. The GABA EC(50) was increased by about 27-fold in the mutant receptor relative to receptors containing a wild-type alpha(2) subunit. Similarly, the GABA EC(50) at alpha(2)(L277A)beta(1)gamma(2S) and alpha(2)(K279A)beta(1)gamma(2S) GABA(A)-R combinations was increased by 51- and 4-fold, respectively. The alpha(2)(R274A) or alpha(2)(L277A) mutations also reduced the maximal response of piperidine-4-sulfonic acid relative to GABA by converting piperidine-4-sulfonic acid into a weak partial agonist at the GABA(A)-R. Based on these results, we propose that alpha(2)(Arg-274) and alpha(2)(Leu-277) are crucial to the efficient transduction of agonist binding into channel gating at the GABA(A)-R.  相似文献   

12.
Integrin beta subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin alpha and beta subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin beta subunits but lacks associating alpha subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem. 273, 8711-8718] and a approximately 30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin beta subunit expression and folding in the absence of alpha subunits. When transfected in the absence of alpha subunits into cells, extracellular domains of mutant beta subunits lacking SDL, but not wild-type beta subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble beta1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in alphabeta complexes. The SDL segment is not required for formation of alpha5beta1, alpha4beta1, alphaVbeta3, and alpha6beta4 heterodimers, but is essential for fomation of alpha6beta1, alphaVbeta1, and alphaLbeta2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The beta1 SDL is required for ligand binding and for the formation of the epitope for the alpha5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of beta-propeller domain of alpha5, but is not essential for nearby beta-propeller epitopes.  相似文献   

13.
To understand how the alpha and beta 2 subunits of tryptophan synthase from Escherichia coli interact to form an alpha 2 beta 2 complex and undergo mutual activation, we have investigated alpha subunits with single amino acid replacements at conserved proline residues. Although the activities of alpha 2 beta 2 complexes that contain wild type alpha subunit or alpha subunits substituted at positions 28, 62, 96, and 207 are similar, the activities of alpha 2 beta 2 complexes that contain alpha subunits substituted at positions 57 and 132 are remarkably altered. Whereas the latter enzymes have greatly reduced activities in the individual half-reactions, they have considerably higher activities in the overall reaction. These remarkable activity results are explained by a decrease in the affinity of these mutant alpha subunits for the beta 2 subunit and by an increase in the affinity in the combined presence of ligands of both the alpha subunit and the beta 2 subunit. Isothermal calorimetric titrations of wild type beta 2 subunit with wild type alpha subunit and a mutant alpha subunit containing a substitution of glycine for proline at position 132 show that both the affinity and the exothermic association enthalpy are greatly reduced in the mutant alpha subunit although the stoichiometry of association is unchanged. The affinity of the mutant alpha subunit for the beta 2 subunits is greatly increased in the presence of an alpha subunit ligand, alpha-glycerol phosphate. We conclude that proline 132 plays a critical role in subunit interaction and in mutual subunit activation.  相似文献   

14.
To investigate the functional role of glutamic acid 350 in the active site of the beta subunit of tryptophan synthase from Salmonella typhimurium, we have replaced this residue by glutamine or alanine by use of site-directed mutagenesis. The mutant alpha 2 beta 2 complexes were expressed, purified, crystallized, and characterized by spectroscopic and kinetic studies with several substrates. We find large alterations in the substrate and reaction specificity of each mutant form of the alpha 2 beta 2 complex. Since the two mutant enzymes are virtually inactive in reactions with L-serine but are active in reactions with beta-chloro-L-alanine, glutamic acid 350 may facilitate the beta-elimination of the weak hydroxyl leaving group of L-serine. The mutant alpha 2 beta 2 complexes are more active than the wild type enzyme in the beta-elimination reaction with beta-chloro-L-alanine. These enzymes are irreversibly inactivated by beta-chloro-L-alanine, whereas the wild type enzyme is not. These altered properties may result from a change in the conformation of the active site, from a change in the orientation of the coenzyme relative to active site residues, or from a change in the solvent accessibility of the active site. The alteration in the active site may enhance the release of amino acrylate from the Schiff base intermediate by hydrolysis or by transamination.  相似文献   

15.
This study investigated the role of beta subunits in the activation of alphabeta heteromeric glycine receptor (GlyR) chloride channels recombinantly expressed in HEK293 cells. The approach involved incorporating mutations into corresponding positions in alpha and beta subunits and comparing their effects on receptor function. Although cysteine-substitution mutations to residues in the N-terminal half of the alpha subunit M2-M3 loop dramatically impaired the gating efficacy, the same mutations exerted little effect when incorporated into corresponding positions of the beta subunit. Furthermore, although the alpha subunit M2-M3 loop cysteines were modified by a cysteine-specific reagent, the corresponding beta subunit cysteines showed no evidence of reactivity. These observations suggest structural or functional differences between alpha and beta subunit M2-M3 loops. In addition, a threonine-->leucine mutation at the 9' position in the beta subunit M2 pore-lining domain dramatically increased the glycine sensitivity. By analogy with the effects of the same mutation in other ligand-gated ion channels, it was concluded that the mutation affected the GlyR activation mechanism. This supports the idea that the GlyR beta subunit is involved in receptor gating. In conclusion, this study demonstrates that beta subunits contribute to the activation of the GlyR, but that their involvement in this process is significantly different to that of the alpha subunit.  相似文献   

16.
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alphabeta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alphabeta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alphabeta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin (as an allosterically acting 'competitive' antagonist) binds to this residue.  相似文献   

17.
Voltage-gated sodium channels (Nav) are complex glycoproteins comprised of an alpha subunit and often one to several beta subunits. We have shown that sialic acid residues linked to Nav alpha and beta1 subunits alter channel gating. To determine whether beta2-linked sialic acids similarly impact Nav gating, we co-expressed beta2 with Nav1.5 or Nav1.2 in Pro5 (complete sialylation) and in Lec2 (essentially no sialylation) cells. Beta2 sialic acids caused a significant hyperpolarizing shift in Nav1.5 voltage-dependent gating, thus describing for the first time an effect of beta2 on Nav1.5 gating. In contrast, beta2 caused a sialic acid-independent depolarizing shift in Nav1.2 gating. A deglycosylated mutant, beta(2-DeltaN), had no effect on Nav1.5 gating, indicating further the impact of beta2 N-linked sialic acids on Nav1.5 gating. Conversely, beta(2-DeltaN) modulated Nav1.2 gating virtually identically to beta2, confirming that beta2 N-linked sugars have no impact on Nav1.2 gating. Thus, beta2 modulates Nav gating through multiple mechanisms possibly determined by the associated alpha subunit. Beta1 and beta2 were expressed together with Nav1.5 or Nav1.2 in Pro5 and Lec2 cells. Together beta1 and beta2 produced a significantly larger sialic acid-dependent hyperpolarizing shift in Nav1.5 gating. Under fully sialylating conditions, the Nav1.2.beta1.beta2 complex behaved like Nav1.2 alone. When sialylation was reduced, only the sialic acid-independent depolarizing effects of beta2 on Nav1.2 gating were apparent. Thus, the varied effects of beta1 and beta2 on Nav1.5 and Nav1.2 gating are apparently synergistic and highlight the complex manner, through subunit- and sugar-dependent mechanisms, by which Nav activity is modulated.  相似文献   

18.
The interaction of the alpha and beta 2 subunits of tryptophan synthase of Escherichia coli to form an alpha 2 beta 2 complex has been probed by differential labeling studies. In the first step the separate alpha or beta 2 subunit or the alpha 2 beta 2 complex was labeled by reductive methylation with trace amounts of [3H]HCHO in the presence of NaCNBH3. In the second step the 3H-labeled preparation was fully labeled under denaturing conditions with [14C]HCHO and NaCNBH3. Peptides containing labeled monomethyl or dimethyl amino groups were isolated after thermolytic digestion or after cyanogen bromide treatment. The 3H/14C ratio of each peptide is a measure of the relative reactivity of the amino group or groups in each peptide. The most reactive amino group in the alpha subunit, lysine-109, is strongly shielded from modification in the alpha 2 beta 2 complex. The most reactive amino group in the beta 2 subunit, the amino-terminal threonine, is not shielded from modification in the alpha 2 beta 2 complex.  相似文献   

19.
The cysteine-rich repeats in the stalk region of integrin beta subunits appear to convey signals impinging on the cytoplasmic domains to the ligand-binding headpiece of integrins. We have examined the functional properties of mAbs to the stalk region and mapped their epitopes, providing a structure-function map. Among a panel of 14 mAbs to the beta(2) subunit, one, KIM127, preferentially bound to alpha(L)beta(2) that was activated by mutations in the cytoplasmic domains, and by Mn(2+). KIM127 also bound preferentially to the free beta(2) subunit compared with resting alpha(L)beta(2). Activating beta(2) mutations also greatly enhanced binding of KIM127 to integrins alpha(M)beta(2) and alpha(X)beta(2). Thus, the KIM127 epitope is shielded by the alpha subunit, and becomes reexposed upon receptor activation. Three other mAbs, CBR LFA-1/2, MEM48, and KIM185, activated alpha(L)beta(2) and bound equally well to resting and activated alpha(L)beta(2), differentially recognized resting alpha(M)beta(2) and alpha(X)beta(2), and bound fully to activated alpha(M)beta(2) and alpha(X)beta(2). The KIM127 epitope localizes within cysteine-rich repeat 2, to residues 504, 506, and 508. By contrast, the two activating mAbs CBR LFA-1/2 and MEM48 bind to overlapping epitopes involving residues 534, 536, 541, 543, and 546 in cysteine-rich repeat 3, and the activating mAb KIM185 maps near the end of cysteine-rich repeat 4. The nonactivating mAbs, 6.7 and CBR LFA-1/7, map more N-terminal, to subregions 344-432 and 432-487, respectively. We thus define five different beta(2) stalk subregions, mAb binding to which correlates with effect on activation, and define regions in an interface that becomes exposed upon integrin activation.  相似文献   

20.
To establish a structure and function map of the beta2 integrin subunit, we mapped the epitopes of a panel of beta2 monoclonal antibodies including function-blocking, nonblocking, and activating antibodies using human/mouse beta2 subunit chimeras. Activating antibodies recognize the C-terminal half of the cysteine-rich region, residues 522-612. Antibodies that do not affect ligand binding map to residues 1-98 and residues 344-521. Monoclonal antibodies to epitopes within a predicted I-like domain (residues 104-341) strongly inhibit LFA-1-dependent adhesion. These function-blocking monoclonal antibodies were mapped to specific residues with human --> mouse knock-out or mouse --> human knock-in mutations. Combinatorial epitopes involving residues distant in the sequence provide support for a specific alignment between the beta-subunit and I domains that was used to construct a three-dimensional model. Antigenic residues 133, 332, and 339 are on the first and last predicted alpha-helices of the I-like domain, which are adjacent on its "front." Other antigenic residues in beta2 and in other integrin beta subunits are present on the front. No antigenic residues are present on the "back" of the domain, which is predicted to be in an interface with other domains, such as the alpha subunit beta-propeller domain. Most mutations in the beta2 subunit in leukocyte adhesion deficiency are predicted to be buried in the beta2 subunit I-like domain. Two long insertions are present relative to alpha-subunit I-domains. One is tied down to the back of the I-like domain by a disulfide bond. The other corresponds to the "specificity-determining loop" defined in beta1 and beta3 integrins and contains the antigenic residue Glu(175) in a disulfide-bonded loop located near the "top" of the domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号