首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this study was to investigate the adaptive mechanisms of hydrogen peroxide-supersensitive AML cells against the reactive oxygen species (ROS). Their scavenging capacity against ROS was determined using a fluorometric probe in the doxorubicin-resistant AML-2/DX100 cell characterized by the down-regulation of catalase. AML-2/DX100 cells had more scavenging capacity against endogenous pro-oxidants than did the parental cells AML-2/WT, suggesting that an anti-oxidant adaptation against ROS occurred. cDNA microarrays for 8000 human genes revealed that among 21 anti-oxidant genes, each four gene was up- and down-regulated more than 1.5-fold in AML-2/DX100 compared with AML-2/WT. The mRNA expression of glutathione S-transferase Pi, peroxiredoxin 2, thioredoxin 2, and glutaredoxin was elevated whereas that of peroxiredoxin 3, metallothionein-1F, superoxide dismutase 2, and thioredoxin reductase 1 was depressed. The result indicates that the down-regulation of certain anti-oxidant mechanisms can be compensated for by the up- and down-regulation of the other anti-oxidant mechanisms.  相似文献   

3.
The multidrug resistance protein (MRP) is a drug efflux membrane pump conferring multidrug resistance to tumor cells. Clinical trials have been undertaken to improve the effectiveness of chemotherapy by adding an MRP inhibitor to the treatment regimen. This study attempted not only to determine novel resistance mechanisms in MRP-overexpressing AML cells (AML-2/DX100) by chronic exposure to doxorubicin in the presence of an MRP inhibitor probenecid but also to find out whether probenecid could increase MRP levels. AML-2/DXPBA cultured in the presence of probenecid (600 microM) and doxorubicin (100 ng/ml) showed a higher level of the multidrug resistance (MDR) phenotype when compared to AML-2/DX100. AML-2/DXPBA showed increased levels of MRP compared to those of AML-2/DX100. Probenecid increased the MRP levels without an increase in MRP mRNA in AML-2/WT in both a time- and dose-dependent manner. Of the MRP inhibitors including probenecid, ofloxacin, erythromycin, and rifampicin used in this study, only probenecid showed a marked chemosensitizing effect in AML-2/DX100 but not in HL-60/Adr, suggesting that the chemosensitizing effects of the MRP inhibitors vary according to the type of resistant cells. The maximum noncytotoxic concentrations of these MRP inhibitors increased the MRP levels to various degrees in both AML-2/WT and HL-60/WT. However, the chemosensitizing effects of the MRP inhibitors were not correlated with their MRP-increasing effects. Altogether, MRP inhibitors such as probenecid have been shown to function as a double-edged sword, indicating that they are not only an effective chemosensitizer of MRP-associated MDR tumor cells but also an MRP activator. Therefore caution should be taken whenever using MRP inhibitors to reverse MRP-mediated multidrug resistance in clinical cancer chemotherapy as well as when used to inhibit MRP expression in vitro.  相似文献   

4.
Chemo-resistance to anti-cancer drugs is a major obstacle in efforts to develop a successful treatment of acute myeloid leukemia (AML). In this study, we investigate whether resveratrol, a common ingredient in a broad variety of fruits and vegetables, can reverse drug resistance in AML cells. Three doxorubicin-resistant AML cell lines (AML-2/DX30, AML-2/DX100, AML-2/DX300) were prepared via long-term exposure to doxorubicin for more than 3 months. DNA microarray analysis demonstrated that many genes were differentially expressed in the resistant cells, as compared with the wild type AML-2/WT cells. In particular, the expression level of the MRP1 gene was significantly increased in the AML-2/DX300 cells, as compared to that detected in AML-2 cells. Importantly, the resveratrol was shown not only to induce cell growth arrest and apoptotic death in doxorubicin-resistant AML cells, but was also shown to downregulate the expression of an MRP1 gene. Furthermore, resveratrol treatment induced a significant increase in the uptake of 5(6)-carboxyfluorescein diacetate, a MRP1 substrate, into the doxorubicin-resistant AML-2/DX300 cells. The results of this study show that resveratrol may facilitate the cellular uptake of doxorubicin via an induced downregulation of MRP1 expression, and also suggest that it may prove useful in overcoming doxorubicin resistance, or in sensitizing doxorubicin-resistant AML cells to anti-leukemic agents.  相似文献   

5.
The cisplatin-resistant gastric cancer cell sublines, SNU-601/Cis2 and /Cis10, were 49 and >530 times more resistant to cisplatin, respectively, compared with the drug-sensitive cells, SNU-601/WT. The SNU-601/Cis2 showed cross-resistance to carboplatin, heptaplatin, doxorubicin, mitomycin C, and 5-fluorouracil compared with the SNU-601/WT whereas the SNU-601/Cis10 displayed collateral sensitivity to these drugs with the exception of cisplatin compared with the SNU-601/Cis2, suggesting that the cross-resistance and collateral sensitivity of cisplatin-resistant gastric cancer cells are dependent upon cisplatin concentrations. Altered expression of the antioxidant and transporter genes (metallothionein, catalase, superoxide dismutases, P-glycoprotein, and the breast cancer resistance protein) was involved in these phenotypes of the cisplatin-resistant gastric cancer cell lines.  相似文献   

6.
In plants, the oxygen generated by photosynthesis can be excited to form reactive oxygen species (ROS) under excessive sunlight. Excess ROS including singlet oxygen (1O2) inhibit the growth, development and photosynthesis of plants. To isolate ROS-resistant crop plants, we used paraquat (PQ), a generator of O2 ·− as a source of screening and mutagen, and obtained two PQ-resistant lines in Pisum sativum, namely R3-1 and R3-2. Both lines showed greater resistance to PQ than their wild type (WT) siblings with respect to germination, root growth, and shoot growth. Biochemical analysis showed differences in these lines, in which ROS-scavenging enzymes undergo changes with a distinguishable increase in Mn-SOD. We further observed that the cytosolic catalases (CATs) in leaves in both lines were shifted in a native-PAGE analysis compared with that of the WT, indicating that the release of bound 1O2 was enhanced. Phenotypic analysis revealed distinguishable differences in leaf development, and in flowering time and position. In addition, R3-1 and R3-2 showed shorter individual internode lengths, dwarf plant height, and stronger branching compared with the WT. These results suggested that PQ-induced ROS-resistant Pisum have the potential pleiotropic effects on flowering time and stem branching, and that ROS including 1O2 plays not only important roles in plant growth and development as a signal transducer, but also appears as a strong inhibitor for crop yield. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Lu CY  Lee HC  Fahn HJ  Wei YH 《Mutation research》1999,423(1-2):11-21
Mitochondrial DNA (mtDNA) mutations and impaired respiratory function have been demonstrated in various tissues of aged individuals. We hypothesized that age-dependent increase of ROS and free radicals production in mitochondria is associated with the accumulation of large-scale mtDNA deletions. In this study, we first confirmed that the proportion of mtDNA with the 4977 bp deletion in human skin tissues increases with age. We then investigated the 8-hydroxy-2'-deoxyguanosine (8-OH-dG) content in skin tissues and lipid peroxides content of the skin fibroblasts from subjects of different ages. The results showed an age-dependent increase of 8-OH-dG level in the total DNA of skin tissues of the subjects above the age of 60 years. The specific content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with age. On the other hand, we examined the enzyme activities of Cu, Zn-superoxide dismutase (Cu,Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase, and glutathione peroxidase (GPx) in the skin fibroblasts. The activities of Cu,Zn-SOD, catalase and glutathione peroxidase were found to decrease with age. However, the activity of Mn-SOD was increased with age before 60 years but was decreased thereafter. Moreover, the activity ratios of Mn-SOD/catalase and Mn-SOD/GPx exhibited the same pattern of change with age. This indicates that free radical scavenging enzymes can effectively dispose of ROS and free radicals before 60 years of age. However, elevated oxidative stress caused by an imbalance between the production and removal of ROS and free radicals occurred in skin fibroblasts after 60 years of age. Taken together, we suggest that the functional decline of free radical scavenging enzymes and the elevation of oxidative stress may play an important role in eliciting oxidative damage and mutation of mtDNA during the human aging process.  相似文献   

9.
Nitric oxide (NO) released from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO or NOC-18) induces apoptosis in human leukemia HL-60 cells. In this study, we isolated a HL-60 variant cell line, HL-NR6, that is resistant to DETA/NO toxicity as assessed by DNA fragmentation, morphology, and colony forming ability. The variant cells also showed resistance to reactive oxygen species (ROS) such as superoxide and hydrogen peroxide as well as NO donors, but not to anti-tumor drugs. We found that HL-NR6 cells when compared with HL-60 cells possessed twice the activities of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and catalase, but no change in Mn-SOD nor in glutathione peroxidase. Immunoblotting confirmed the high levels of both enzymes in the variant cell. We also observed that ROS generation following DETA/NO exposure was substantially higher in HL-60 cells than in HL-NR6 cells, using the 2′,7′-dichlorofluorescein fluorometric method. Moreover, the SOD mimetic Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin and exogenous catalase effectively attenuated DETA/NO-elicited DNA fragmentation in HL-60 cells. Taken together, these data suggested that the NO resistance in HL-NR6 cells is associated with the increased Cu,Zn-SOD/catalase and that NO-mediated apoptosis in HL-60 cells is correlated with the generation of ROS and derived molecules like peroxynitrite.  相似文献   

10.
Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.  相似文献   

11.
We explored if epigenetic mechanisms could be involved in the down-regulated expression of catalase gene (CAT) in the doxorubicin-resistant acute myelogenous leukemia (AML)-2/DX100 cells. Down-regulated CAT expression in AML-2/DX100 cells was completely recovered after treatment of hydrogen peroxide (H2O2) and histone deacetylase inhibitor, trichostatin A (TSA) but was increased slightly by the treatment of DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5-AdC). Bisulfite-sequencing PCR revealed that a CpG island of CAT was not methylated in AML-2/DX100 cells. Chromatin immunoprecipitation assay confirmed that acetylation of histone H4 in AML-2/DX100 cells significantly decreased as compared with that in AML-2/WT cells, which was significantly increased by TSA more than 5-AdC. Meanwhile, overexpression of other up-regulated peroxidase genes appears to make compensation for decreased H2O2-scavenging activity for the down-regulated CAT expression in AML-2/DX100 cells. These results suggest that histone H4 deacetylation is responsible for the down-regulated CAT expression in AML-2/DX100 cells, which are well adapted to oxidative stress.  相似文献   

12.
A study of the involvement of glutathione (GSH) in cellular resistance to cisplatin was performed using methylmercury-resistant sublines (PC12/TM series) of the PC12 line of rat pheochromocytoma cells. The seven clonal sublines of PC12 cells (PC12/TM, PC12/TM2, PC12/TM5, PC12/TM11, PC12/TM15, PC12/TM23, PC12/TM26) used in the study had intracellular levels of GSH that ranged from 8.7–39.9 nmol/mg protein. The intracellular level of GSH was significantly correlated (p < 0.01, r = 0.87) with the sensitivity to cisplatin of PC12 cells and the seven sublines. Among the seven sublines, PC12/TM cells contained the highest concentration of GSH and were the most resistant to cisplatin. Treatment of PC12/TM cells with L-buthionine-SR-sulfoximine, which reduced the level of GSH to that in the parental PC12 cells, significantly reduced the resistance of the cells to cisplatin. The amount of platinum accumulated by resistant PC12/TM cells after treatment with cisplatin was higher than that by sensitive PC12 cells. These results suggest that the intracellular level of GSH might be directly involved in the resistance to cisplatin of these cell lines. However, a high intracellular concentration of GSH does not appear to contribute to a decrease in the accumulation of cisplatin in these cells.  相似文献   

13.
The multidrug resistance of cancer cells can be mediated by an overexpression of the human MDR1 and MRP genes, which encode the transmembrane efflux pumps, the 170 kDa P-glycoprotein (Pgp) and the 190 kDa multidrug resistance-associated protein (MRP), respectively. In this study, we investigate which protein is preferentially overexpressed in the function of doxorubicin concentrations in the acute myelogenous leukemia cell line (OCI/AML-2). Multidrug-resistant AML-2 sublines were isolated in doxorubicin concentrations of 20, 100, 250, and 500 ng/ml. MRP was at first expressed at low concentrations of less than 5 x IC50 (100 ng/ml) of doxorubicin followed by the overexpression of Pgp with concentrations of more than 12.5 x IC50 (250 ng/ml) of doxorubicin. In addition, it appeared that increased amounts of MRP and its mRNA in AML-2/DX20 and /DX100 decreased gradually in both AML-2/DX250 and /DX500 overexpressing Pgp. In conclusion, it is thought that the overexpression of MRP or Pgp is dependent upon drug concentrations. It could be implicated that the overexpression of MRP might be negatively related to that of Pgp.  相似文献   

14.
We report herein that the level of reactive oxygen species (ROS) observed using dihydrorhodamine is much higher in either GTS1-deleted (gts1Delta) or GTS1-overexpressing (TMpGTS1) transformants than in the wild-type and that the levels of protein carbonyls are increased and the glutathione levels are decreased in both transformants. Consistently, the activities of superoxide dismutases (SODs) in both gts1Delta and TMpGTS1 were severely weakened, while the protein levels of both Cu/Zn-SOD and Mn-SOD were not so changed. As the intracellular copper levels were significantly increased in both transformants, we hypothesized that, in either gts1Delta or TMpGTS1 cells, the imbalanced homeostasis of copper induced an accumulation of ROS which caused inactivation of SODs further increasing ROS levels.  相似文献   

15.
In fish, as in other aerobic organisms, glutathione and glutathione-related enzymes are important components in the defences against oxidative stress. To study if hepatic glutathione levels and/or activities of glutathione-related enzymes can act as indicators of oxidative stress in fish, we injected rainbow trout (Oncorhynchus mykiss) intraperitoneally with paraquat (PQ), menadione (MD), naphthazarin (DHNQ), or beta-naphthoflavone (beta-NF), all known to cause a rise in reactive oxygen species (ROS). After 2 and 5 days of exposure, we measured the activities of hepatic glutathione peroxidase (GPox), glutathione S-transferase (GST), gamma-glutamylcysteine synthetase (GCS), and glutathione reductase (GR). We also measured total glutathione (tGSH) and oxidised glutathione (GSSG) in the liver of fish treated with PQ and MD. All chemicals caused an increase in GR activity after 5 days, which ranged from 160% in fish treated with beta-NF to 1,500% in fish treated with PQ. All chemicals except beta-NF caused moderate elevation in GST activity; GPox activity was lower in fish treated with DHNQ and MD, while GCS activity increased twofold in the fish treated with DHNQ, without being affected by beta-NF, PQ or MD. After 5 days of treatment with PQ or MD, tGSH content was elevated. Our findings demonstrated that of the parameters included in the study, GR activity was the most responsive to treatment with redox cycling compounds, indicating that GR activity is a promising biomarker of such compounds and possibly indicating oxidative stress in rainbow trout.  相似文献   

16.
Song JH  Choi CH  Yeom HJ  Hwang SY  Kim TS 《Life sciences》2006,79(2):193-202
Acquired drug-resistance phenotype is a key factor in the relapse of patients suffering hematological malignancies. In order to investigate the genes involved in drug resistance, a human leukemia cell line that is resistant to doxorubicin, an anthracycline anticancer agent (AML-2/DX100), was selected and its gene expression profile was analyzed using a cDNA microarray. A number of genes were differentially expressed in the AML-2/DX100 cells, compared with the wild type (AML-2/WT). Pro-apoptotic genes such as TNFSF7 and p21 (Cip1/Waf1) were significantly down-regulated, whereas the IKBKB, PCNA, stathmin 1, MCM5, MMP-2 and MRP1 genes, which are involved in anti-apoptotic or cell cycle progression, were over-expressed. The AML-2/DX100 cells were also resistant to other anticancer drugs, including daunorubicin and camptothecin, and the expression levels of the differentially regulated genes such as STMN1, MMP-2 and CTSG, were constantly maintained. This suggests that the deregulated genes obtained from the DNA microarray analysis in a cell line model of drug resistance might contribute to the acquired drug resistance after chronic exposure.  相似文献   

17.
Numerous reactive oxygen species (ROS) and reactive carbonyl species (RCS) issuing from lipid and sugar oxidation are known to damage a large number of proteins leading to enzyme inhibition and alteration of cellular functions. Whereas studies in literature only focus on the reactivity of one or two of these compounds, we aimed at comparing in the same conditions of incubations (4 and 24 h at 37 °C) the effects of both various RCS (4-hydroxynonenal, 4-hydroxyhexenal, acrolein, methylglyoxal, glyoxal, malondialdehyde) and ROS (H2O2, AAPH) on the activity of key enzymes involved in cellular oxidative stress: superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). This was realized both in vitro on purified proteins and MIAPaCa-2 cells. Incubation of these enzymes with RCS resulted in a significant time- and concentration-dependent inhibition for both pure enzymes and in cell lysates. Among all RCS and ROS, hydroxynonenal (HNE) was observed as the most toxic for all studied enzymes except for SOD and is followed by hydrogen peroxide. At 100 μM, HNE resulted in a 50% reduction of GPx, 56% of GST, 65% of G6PDH, and only 10% of Cu,Zn-SOD. Meanwhile it seems that concentrations used in our study are closer to biological conditions for ROS than for RCS. H2O2 and AAPH-induced peroxyl radicals may be probably more toxic towards the studied enzymes in vivo.  相似文献   

18.
研究了低温胁迫下嫁接和自根黄瓜叶片Mn-SOD、Cu/Zn-SOD和CAT mRNA基因表达和酶活性变化及其与抗冷性的关系.结果表明:低温胁迫下,嫁接与自根黄瓜叶片Cu/Zn-SOD、Mn-SOD mRNA基因相对表达量变化分别与其Cu/Zn-SOD、Mn-SOD活性变化相吻合,而CATmRNA相对表达量变化与其CAT活性变化并不一致;嫁接黄瓜叶片Cu/Zn-SOD和Mn-SOD mRNA相对表达量及SOD、Cu/Zn-SOD和Mn-SOD活性均高于自根黄瓜,MDA含量和电解质渗漏率均低于自根黄瓜,嫁接黄瓜较高的SOD基因表达量调控的较高SOD活性是其抗冷性强于自根黄瓜的主要因素;嫁接黄瓜的功能叶CAT mRNA相对表达量略高于自根黄瓜,而幼叶CAT mRNA相对表达量低于后者,但两者CAT活性差异不大,说明低温胁迫对嫁接黄瓜叶片CAT mRNA相对表达量及CAT活性的影响不大.  相似文献   

19.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

20.
The relationship between expression of genes encoding key antioxidant enzymes, heme oxygenase-1, Bcl-2, and Bcl-xl and change in production of reactive oxygen species (ROS) resulting from development of resistance of cancer cells K562, MCF-7, and SKOV-3 to the prooxidant chemotherapeutic agent doxorubicin (DOX) has been studied. Significant increase in mRNA level and activity of Mn-superoxide dismutase (Mn-SOD), catalase, and selenium-dependent glutathione peroxidase-1 (GPx-1) and reduced ROS level was found in resistant K562/DOX and SKVLB cells. In contrast, no change in ROS level was observed in MCF-7/DOX cells in parallel with decrease in Mn-SOD and catalase mRNAs and corresponding activities concurrently with high increase in GPx-1 mRNA and activity. As a result of the development of resistance, a similarity was found between the change in ROS level and the change in ho-1 and bcl-2 gene expression, whereas elevation of bcl-xl gene expression was observed in all three types of resistant cells. Particular features of development of adaptive antioxidant response as well as redox-dependent change in bcl-2 gene expression under formation of DOX resistance of cancer cells of different genesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号