首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD5 is a cell surface receptor that negatively regulates B cell function, but whose relationship to the immunoreceptor tyrosine-based inhibitory motif (ITIM) family of B cell inhibitory receptors is unclear. Using Fcgamma type IIB receptor-CD5 chimeras encompassing the cytoplasmic domain of CD5, we previously showed that a particular region of the molecule containing two tyrosine residues, Y429 and Y441, in an amino acid stretch similar to the Src autophosphorylation motif and a putative ITIM, respectively, antagonized early signaling events triggered through the B cell receptor (BCR). In this study, we provide evidences that only Y429 is mandatory for the inhibition by CD5 of the calcium response activated via the BCR. This residue also efficiently controls inhibition of the Ras/extracellular signal-related kinase-2 pathway. Analyzing the membrane translocation of the AKT protooncogene using its 3'-phosphoinositide-specific pleckstrin homology domain fused to the green fluorescent protein as a probe, we also show that CD5 strongly impairs its cellular redistribution and demonstrate the role played by Y429 in this process. We finally report that Y429 controls almost exclusively CD5 phosphorylation as well as inhibition of BCR-triggered IL-2 production upon coaggregation of the two receptors. Thus, CD5 uses an ITIM-independent strategy, centered on Y429, the major tyrosine-phosphorylated residue in its cytoplasmic domain, to inhibit BCR activation.  相似文献   

2.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.  相似文献   

3.
FcR-like (FCRL) 2 is a transmembrane protein with immunomodulatory potential that is preferentially expressed by memory B cells in humans. It has two consensus ITIMs in addition to a putative ITAM sequence in its cytoplasmic domain. We have confirmed the cellular distribution of FCRL2 and analyzed its functional potential to show that coligation with the BCR leads to tyrosine phosphorylation of its ITIM motifs and subsequent Src homology region 2 domain-containing phosphatase-1 recruitment to facilitate inhibition of BCR signaling. Mutational analysis indicates that the tyrosine residues in both inhibitory motifs of FCRL2 are required for complete inhibition of BCR signaling, whereas tyrosines in the putative activation motif are dispensable for signal modulation. These findings suggest a negative immunomodulatory function for FCRL2 in the regulation of memory B cells.  相似文献   

4.
The cell surface glycoprotein CD19 and the Src-related protein tyrosine kinase Lyn are key mediators of, respectively, positive and negative signaling in B cells. Despite the apparent opposition of their regulatory functions, a recent model of the biochemical events after B cell receptor (BCR) ligation intimately links the activation of Lyn and CD19. We examined the biochemical consequences of BCR ligation in mouse B cells lacking either Lyn or CD19 for evidence of interaction or codependence. In contrast to published results, we found CD19 phosphorylation after BCR ligation to be unaffected by the absence of Lyn, yet dependent on Src family protein tyrosine kinases as it was inhibited fully by PP2, an Src family-specific inhibitor. Consistent with normal CD19 phosphorylation in lyn(-/-) B cells, the recruitment of phosphoinositide-3 kinase to CD19 and the ability of CD19 to enhance both intracellular calcium flux and extracellular signal-regulated kinase 1/2 activation after coligation with the BCRs were intact in the absence of Lyn. Similarly, unique functions of Lyn were found to be independent of CD19. CD19(-/-) B cells were normal for increased Lyn kinase activity after BCR ligation, inhibition of BCR-mediated calcium flux after CD22 coligation, and inhibition of extracellular signal-regulated kinase phosporylation after FcgammaRIIB coligation. Collectively, these data show that the unique functions of Lyn do not require CD19 and that the signal amplification mediated by CD19 is independent of Lyn. We conclude that the roles of Lyn and CD19 after BCR ligation are independent and opposing, one being primarily inhibitory and the other stimulatory.  相似文献   

5.
6.
The immunoreceptor tyrosine-based inhibition motif (ITIM) is found in various membrane molecules such as CD22 and the low-affinity Fc receptor for IgG in B cells and the killer cell-inhibitory receptor and Ly-49 in NK cells. Upon tyrosine phosphorylation at the ITIMs, these molecules recruit SH2 domain-containing phosphatases such as SH2-containing tyrosine phosphatase-1 and negatively regulate cell activity. The B cell surface molecule CD72 carries an ITIM and an ITIM-like sequence. We have previously shown that CD72 is phosphorylated and recruits SH2-containing tyrosine phosphatase-1 upon cross-linking of the Ag receptor of B cells (BCR). However, whether CD72 modulates BCR signaling has not yet been elucidated. In this paper we demonstrate that expression of CD72 down-modulates both extracellular signal-related kinase (ERK) activation and Ca2+ mobilization induced by BCR ligation in the mouse B lymphoma line K46micromlambda, whereas BCR-mediated ERK activation was not reduced by the ITIM-mutated form of CD72. Moreover, coligation with CD72 with BCR reduces BCR-mediated ERK activation in spleen B cells of normal mice. These results indicate that CD72 negatively regulates BCR signaling. CD72 may play a regulatory role in B cell activation, probably by setting a threshold for BCR signaling.  相似文献   

7.
KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential   总被引:14,自引:0,他引:14  
KIR2DL4 (CD158d) is an unusual member of the killer cell Ig-like receptor family expressed in all NK cells and some T cells. KIR2DL4 activates the cytotoxicity of NK cells, despite the presence of an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic tail. The role of this ITIM on the activating function of KIR2DL4, and whether it can provide inhibitory signals, is not known. Mutated forms of KIR2DL4 were engineered that lacked either the tyrosine in the ITIM or an arginine-tyrosine motif in the transmembrane region that is required for the activation signal. The activity of the mutated KIR2DL4 molecules was tested in a redirected lysis assay. The ITIM was not necessary for activation of lysis by KIR2DL4. The activation signal of KIR2DL4 was sensitive to inhibition by another ITIM-containing receptor. The activation-deficient mutant of KIR2DL4 inhibited the signal delivered by the activating receptor CD16. In pull-down experiments with GST fusion proteins, the tyrosine-phosphorylated cytoplasmic tail of KIR2DL4 bound the Src homology 2-containing phosphatases 1 and 2, as did the tail of the inhibitory receptor KIR2DL1. Therefore, KIR2DL4 has inhibitory potential in addition to its activating function.  相似文献   

8.
Carcinoembryonic Ag-related cellular adhesion molecule 1 (CEACAM1) represents a group of transmembrane protein isoforms that consist of variable numbers of extracellular Ig-like domains together with either a long cytoplasmic (cyt) tail containing two immunoreceptor tyrosine-based inhibitory motifs or a unique short cyt tail. Although CEACAM1 has been reported to be expressed on the surface of T lymphocytes upon activation, its roles in T cell regulation are controversial due to the lack of functional characterization of each individual CEACAM1 isoform. We thus cotransfected Jurkat T cells with CEACAM1 isoform-encoding constructs and an IL-2 promoter-bearing plasmid or a small interference RNA targeting src homology domain 2 containing phosphatase 1. In a luciferase reporter assay and through measurements of cytokine secretion (IL-2, IL-4, and IFN-gamma), CEACAM1 containing either a long or a short cyt tail inhibited or costimulated, respectively, TCR/CD3 complex plus CD28 mediated activation with the inhibitory functions of the long cyt tail dominating. The inhibitory function of CEACAM1, was dependent upon src homology domain 2 containing phosphatase 1 activity, required both tyrosine residues within the immunoreceptor tyrosine-based inhibitory motif domains of the cyt tail and was mediated through the mitogen-activated protein kinase pathway. CEACAM1-mediated inhibition could be functionally reconstituted by incubation of PBMC with either a CEACAM1-specific mAb or CEACAM1-Fc fusion protein in the presence of an allogeneic or mitogenic stimulus, respectively. These studies indicate that the long and short cyt tails of CEACAM1 serve as inhibitory and costimulatory receptors, respectively, in T cell regulation.  相似文献   

9.
10.
The Lck tyrosine kinase is involved in signaling by T cell surface receptors such as TCR/CD3, CD2, and CD28. As other downstream protein-tyrosine kinases are activated upon stimulation of these receptors, it is difficult to assign which tyrosine-phosphorylated proteins represent bona fide Lck substrates and which are phosphorylated by other tyrosine kinases. We have developed a system in which Lck can be activated independently of TCR/CD3. We have shown that activation of an epidermal growth factor receptor/Lck chimera leads to the specific phosphorylation of Ras GTPase-activating protein (RasGAP) and two RasGAP-associated proteins, p56(dok) and p62(dok). Activation of the chimeric protein correlates with an increase in cellular Ca(2+) in the absence of ZAP-70 and phospholipase Cgamma1 phosphorylation. Furthermore, we have found that p62(dok) co-immunoprecipitates with the activated epidermal growth factor receptor/LckF505 and that phosphorylated Dok proteins bind to the Src homology 2 domain of Lck in vitro. In addition, we have shown that activation via the CD2 but not the TCR/CD3 receptor leads to the phosphorylation of p56(dok) and p62(dok). Using JCaM1.6 cells, we have demonstrated that Lck is required for CD2-mediated phosphorylation of Dok proteins. We propose that phosphorylation and Src homology 2-mediated association of p56(dok) and p62(dok) with Lck play a selective function in accessory receptor signal transduction mechanisms.  相似文献   

11.
The negative regulation of T- or B-cell antigen receptor signaling by CD5 was proposed based on studies of thymocytes and peritoneal B-1a cells from CD5-deficient mice. Here, we show that CD5 is constitutively associated with phosphotyrosine phosphatase activity in Jurkat T cells. CD5 was found associated with the Src homology 2 (SH2) domain containing hematopoietic phosphotyrosine phosphatase SHP-1 in both Jurkat cells and normal phytohemagglutinin-expanded T lymphoblasts. This interaction was increased upon T-cell receptor (TCR)-CD3 cell stimulation. CD5 co-cross-linking with the TCR-CD3 complex down-regulated the TCR-CD3-increased Ca2+ mobilization in Jurkat cells. In addition, stimulation of Jurkat cells or normal phytohemagglutinin-expanded T lymphoblasts through TCR-CD3 induced rapid tyrosine phosphorylation of several protein substrates, which was substantially diminished after CD5 cross-linking. The CD5-regulated substrates included CD3zeta, ZAP-70, Syk, and phospholipase Cgammal but not the Src family tyrosine kinase p56(lck). By mutation of all four CD5 intracellular tyrosine residues to phenylalanine, we found the membrane-proximal tyrosine at position 378, which is located in an immunoreceptor tyrosine-based inhibitory (ITIM)-like motif, crucial for SHP-1 association. The F378 point mutation ablated both SHP-1 binding and the down-regulating activity of CD5 during TCR-CD3 stimulation. These results suggest a critical role of the CD5 ITIM-like motif, which by binding to SHP-1 mediates the down-regulatory activity of this receptor.  相似文献   

12.
C3dg is a cleavage product of the C3 component of complement that can facilitate the coligation of the complement receptor 2 (CR2/CD21) with the BCR via C3dg/Ag complexes. This interaction can greatly amplify BCR-mediated signaling events and acts to lower the threshold for B cell activation. Although previous studies have used anti-CR2 Abs or used chimeric Ags in the context of BCR transgenic mice as surrogate C3d-containing ligands, we have used a physiological form of C3d to study signaling in B cells from wild-type C57BL/6 mice. We find that while CR2-enhanced BCR signaling causes intracellular Ca2+ mobilization and total pTyr phosphorylation of an intensity comparable to optimal BCR ligation using anti-IgM Abs, it does so with limited activation of inhibitory effectors (such as CD22, Src homology region 2 domain containing phosphatase 1, and SHIP-1) and without substantial receptor cross-linking. In summary, we demonstrate that CR2-enhanced BCR signaling may proceed not only through the previously described amplification of positive signaling pathways, but is potentially augmented by a lack of normal inhibitory/feedback signaling.  相似文献   

13.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa transmembrane glycoprotein expressed by endothelial cells, platelets, monocytes, neutrophils, and certain T cell subsets. The PECAM-1 extracellular domain has six Ig-homology domains that share sequence similarity with cellular adhesion molecules. The PECAM-1 cytoplasmic domain contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) that, when appropriately engaged, becomes phosphorylated on tyrosine residues, creating docking sites for nontransmembrane, Src homology 2 domain-bearing protein tyrosine phosphatase (SHP)-1 and SHP-2. The purpose of the present study was to determine whether PECAM-1 inhibits protein tyrosine kinase (PTK)-dependent signal transduction mediated by the immunoreceptor tyrosine-based activation motif-containing TCR. Jurkat cells, which coexpress PECAM-1 and the TCR/CD3 complex, were INDO-1AM-labeled and then incubated with anti-CD3epsilon mAbs, anti-PECAM-1 mAbs, or both, and goat anti-mouse IgG was used to cross-link surface-bound mAbs. Calcium mobilization induced by CD3 cross-linking was found to be attenuated by coligation of PECAM-1 in a dose-dependent manner. PECAM-1-mediated inhibition of TCR signaling was attributable, at least in part, to inhibition of release of calcium from intracellular stores. These data provide evidence that PECAM-1 can dampen signals transduced by ITAM-containing receptors and support inclusion of PECAM-1 within the family of ITIM-containing inhibitors of PTK-dependent signal transduction.  相似文献   

14.
CD22, a B lymphocyte membrane glycoprotein, contains immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic region and recruits Src homology 2-containing protein-tyrosine phosphatase-1 (SHP-1) to the phosphorylated ITIMs upon ligation of B lymphocyte antigen receptor (BCR), thereby negatively regulating BCR signaling. Among the three previously identified ITIMs, both ITIMs containing tyrosine residues at position 843 (Tyr(843)) and 863 (Tyr(863)), respectively, are shown to be required for CD22 to recruit SHP-1 and regulate BCR signaling upon BCR ligation by anti-Ig antibody (Ab), indicating that CD22 has the SHP-1-binding domain at the region containing Tyr(843) and Tyr(863). Here we address the requirement of CD22 for SHP-1 recruitment and BCR regulation upon BCR ligation by antigen, which induces much stronger CD22 phosphorylation than anti-Ig Ab does. We demonstrate that the CD22 mutant in which both Tyr(843) and Tyr(863) are replaced by phenylalanine (CD22F5/6) recruits SHP-1 and regulates BCR signaling upon stimulation with antigen but not anti-Ig Ab. This result strongly suggests that CD22 contains another SHP-1 binding domain that is specifically activated upon stimulation with antigen. Both of the flanking sequences of Tyr(783) and Tyr(817) fit the consensus sequence of ITIM, and the CD22F5/6 mutant requires these tyrosine residues for SHP-1 binding and BCR regulation. Thus, these ITIMs constitute a novel conditional SHP-1-binding site of CD22 that is activated upon BCR ligation by antigen but not by anti-Ig Ab.  相似文献   

15.
Recently, we and others have demonstrated that negative signaling in B cells selectively induces the tyrosine phosphorylation of a novel inositol polyphosphate phosphatase, p145SHIP. In this study, we present data indicating that p145SHIP binds directly a phosphorylated motif, immunoreceptor tyrosine-based inhibition motif (ITIM), present in the cytoplasmic domain of Fc gammaRIIB1. Using recombinant SH2 domains, we show that binding is mediated via the Src homology region 2 (SH2)-containing inositol phosphatase (SHIP) SH2 domain. SHIP also bound to a phosphopeptide derived from CD22, raising the possibility that SHIP contributes to negative signaling by this receptor as well as Fc gammaRIIB1. The association of SHIP with the ITIM phosphopeptide was activation independent, while coassociation with Shc was activation dependent. Furthermore, experiments with Fc gammaRIIB1-deficient B cells demonstrated a genetic requirement for expression of Fc gammaRIIB1 in the induction of SHIP phosphorylation and its interaction with Shc. Based on these results, we propose a model of negative signaling in which co-cross-linking of surface immunoglobulin and Fc gammaRIIB1 results in sequential tyrosine phosphorylation of the ITIM, recruitment and phosphorylation of p145SHIP, and subsequent binding of Shc.  相似文献   

16.
The present study demonstrates negative intracellular cross-talk between angiotensin II type 2 (AT2) and insulin receptors. AT2 receptor stimulation leads to inhibition of insulin-induced extracellular signal-regulated protein kinase (ERK2) activity and cell proliferation in transfected Chinese hamster ovary (CHO-hAT2) cells. We show that AT2 receptor interferes at the initial step of insulin signaling cascade, by impairing tyrosine phosphorylation of the insulin receptor (IR) beta-chain. AT2-mediated inhibition of IR phosphorylation is insensitive to pertussis toxin and is also detected in neuroblastoma N1E-115 and pancreatic acinar AR42J cells that express endogenous receptors. We present evidence that AT2 receptor inhibits the autophosphorylating tyrosine kinase activity of IR, with no significant effect on insulin binding properties. AT2-mediated inactivation of IR does not mainly involve tyrosine dephosphorylation by vanadate-sensitive tyrosine phosphatases nor serine/threonine phosphorylation by protein kinase C. As a consequence of IR inactivation, AT2 receptor inhibits tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and signal-regulatory protein (SIRPalpha1) and prevents subsequent association of both IRS-1 and SIRPalpha1 with Src homology 2 (SH2)-containing tyrosine phosphatase SHP-2. Our results thus demonstrate functional trans-inactivation of IR kinase by G protein-coupled AT2 receptor, illustrating a novel mode of negative communication between two families of membrane receptors.  相似文献   

17.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

18.
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  相似文献   

19.
Membrane microdomains (lipid rafts) are enriched in selected signaling molecules and may compartmentalize receptor-mediated signals. Here, we report that in primary human B lymphocytes and in Ramos B cells B cell receptor (BCR) stimulation induces rapid and transient redistribution of a subset of engaged BCRs to lipid rafts and phosphorylation of raft-associated tyrosine kinase substrates. Cholesterol sequestration disrupted the lipid rafts, preventing BCR redistribution, but did not inhibit tyrosine kinase activation or phosphorylation of mitogen-activated protein kinase/extracellular regulated kinase. However, raft disruption enhanced the release of calcium from intracellular stores, suggesting that rafts may sequester early signaling events that down-regulate calcium flux. Consistent with this, BCR stimulation induced rapid and transient translocation of the Src homology 2 domain-containing inositol phosphatase, SHIP, into lipid rafts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号