首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The motor domain of A1A0 ATPases is composed of only two subunits, the stator subunit I and the rotor subunit c. Recent studies on the molecular biology of the A0 domains revealed the surprising finding that the gene encoding subunit c underwent several multiplication events leading to rotor subunits comprising 2, 3, or even 13 hairpin domains suggesting multimeric in different stoichiometry as well as monomeric rotors. The number of ion translocating groups per rotor ranges from 13 to 6. Furthermore, as deduced from the gene sequences H(+)-as well as Na(+)-driven rotors are found in archaea. Features previously thought to be distinctive for A0, F0 or V0 are all found in A0 suggesting that the differences encountered in the three classes of ATPases today emerged already very early in evolution. The extraordinary features and exceptional structural and functional variability in the rotor of A1A0 ATPases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

3.
Factor XIII a subunit (F13A) is the last enzyme in the blood coagulation cascade. It is characterized by extensive genetic polymorphism defined by 4 common alleles, F13A*1A, 1B, 2A and 2B and a few rare variants, some responsible for severe coagulation deficiencies. In order to infer the evolutionary affinities between the common F13A alleles we have applied PCR techniques to study, in a Northern Portuguese sample, a short tandem repeat polymorphism located within the 5' untranslated region of the F13A gene. The analysis of the molecular heterogeneity within the F13A gene products revealed that the four biochemical variants shared very similar, truncated, distributions of STR alleles and showed no signs of predominant haplotypic associations. These findings seem to support both the inferences that intragenic recombination played an important role in the generation of molecular diversity within each of the four main F13A alleles and that all the four F13A alleles must be rather old. Molecular heterogeneity levels allowed the identification of 1B as the oldest F13A allelic state, and 2A as the most recently generated allele, but were not different enough to accurately track the divergence of alleles 1A and 2B. However, additional analysis of linkage disequilibrium patterns indicates that 1B-->2B-->1A-->2A is the most likely evolutionary order of appearance of F13A main protein alleles, confirming and extending a previous hypothetical model inferred from their molecular features.  相似文献   

4.
ATP4, the structural gene for yeast F0F1 ATPase subunit 4   总被引:1,自引:0,他引:1  
A plasmid containing the gene coding for the Saccharomyces cerevisiae F0F1 ATPase subunit 4 was isolated from a yeast genomic DNA library using the oligonucleotide probe procedure. The gene and the surrounding regions were cloned into M13 tg 130 and M13 tg 131 phage vectors. A 732-base-pair open reading frame encoding a 244-amino-acid polypeptide is described. The nucleotide sequence predicts that subunit 4 is probably derived from a precursor protein with a hydrophilic and basic 35-amino-acid leader sequence. Mature subunit 4 contains 209 amino acid residues and the predicted molecular mass is 23250 Da. This subunit presents amphiphilic behaviour with two distinct domains. A high alpha-helix content of 77% was predicted from the sequence. Subunit 4 shows homology with the b subunit of Escherichia coli ATP synthase.  相似文献   

5.
Summary The locus for the mitochondrial malic enzyme (ME2) seems to be closely linked to the gene coding for the A subunit of coagulation factor XIII (F13A). From 18 informative families with 54 children a maximum lod score of 4.33 was obtained at a recombination fraction of 0.10. Since the assignment of F13A to the short arm of chromosome 6 was recently confirmed, the locus for ME2 can be added to this linkage group. The map order seems to be: GLO1-HLA-F13A-ME2.  相似文献   

6.
7.
Various hybrid plasmids carrying a portion of the gene for the gamma subunit of the H+-ATPase of Escherichia coli complemented five mutants defective in the enzyme in a genetic test, indicating that the mutants are defective in the gamma subunit. Since the nucleotide sequence of genomic DNA carried on the plasmids is known, the defective site(s) of the mutants could be located within the gene for the gamma subunit as follows: KF10 and NR70, KF1, and KF12 and KF13 have a mutation causing a defect(s) in amino acid residues 1 to 82, 83 to 167, and 168 to 287, respectively, of the gamma subunit. The biochemical properties of all these mutants except NR70 were analyzed in terms of proton permeability of the membranes and assembly of F1. Results suggested that KF1 and KF10 have defective F1 without at least the alpha and beta subunits on their membranes, whereas KF12 and KF13 have F1's of rather similar structure to that of the wild type. Attempts were made to purify F1 oF KF12 as a single complex. Although the F1 complex dissociated during purification, active alpha and beta subunits of KF12 were partially purified. On the basis of these biochemical and genetic results, it is suggested that structural alterations in the primary sequence of the gamma subunit corresponding to residues 1 to 167 cause more extensive defects in the assembly of F1 than alteration in the sequence of residues 168 to 287.  相似文献   

8.
S. D. Harrison  N. Solomon    G. M. Rubin 《Genetics》1995,139(4):1701-1709
We have performed and F(2) genetic screen to identify lethal mutations within the 63E-64A genomic region. We have isolated 122 mutations in 20 different complementation groups. Of these groups, 16 are represented by multiple alleles. We have also established that the Rop and Ras2 genes are located within the 63E-64A genomic domain at 64A10,11. We have sequenced 10.2 kb of DNA surrounding this gene pair and find that in addition to Rop and Ras2 there is another gene located within this DNA sequence. The gene product, which we have named Rfc40, shows 68% identity to the 40-kDa subunit of replication factor C. We find that the members of one complementation group (13 alleles) derived from our screen correspond to mutations in the Rop gene, whereas the members of another (five alleles) correspond to mutations in the Rfc40 gene. In addition we have isolated 11 new mutant alleles of the disembodied gene.  相似文献   

9.
Linkage between the locus for coagulation factor XIIIA (F13A) and HLA-region genes has been revealed during a linkage study between F13A and approximately 40 other polymorphic marker genes. In males, the maximum lod score between F13A and HLA-region genes (HLA-A, -C, -B, -DR; C4A, -B; Bf; and/or C2) is 7.60 at theta 1 = .18. To GLO, the maximum lod score is 2.37 at theta 1 = .19; to PGM3, .22 at theta 1 = .35. Female data indicate a clear sex difference in recombination frequency between F13A and HLA. The present findings, in combination with earlier knowledge of PGM3/GLO/HLA localization and gene distances, show that F13A is distal to HLA on the short arm of chromosome 6 in man. It is thus likely that by including FXIIIA typing in linkage studies, the whole male 6p is within mapping distance of highly polymorphic, classical marker genes. Earlier findings that the Hageman factor gene (F12) is located in the same chromosomal region may indicate the presence of a coagulation factor gene cluster in this region.  相似文献   

10.
Human epidermal type I transglutaminase coexists in keratinocytes with another cross-linking enzyme, tissue type II transglutaminase. There are at least five different forms of the enzyme in mammals. Gene mapping studies allowed us to determine whether the different transglutaminases are products of the same gene or separate genes. The gene encoding factor XIII subunit a transglutaminase (F13A1) was previously assigned to human chromosome 6, p24----p25. We demonstrate using somatic cell hybrids that the human epidermal type I transglutaminase gene (gene symbol is designated TGM1) is located on human chromosome 14, providing evidence that at least two human transglutaminases are encoded by separate genes.  相似文献   

11.
A fimbrial adhesin, designated F1845, was found to be responsible for the diffuse HEp-2 cell adherence of a diarrheal Escherichia coli isolate. The genetic determinant of F1845 was cloned, and the order of the genes necessary for production of F1845 was determined by maxicell analysis. Five polypeptides with apparent sizes of 10, 95, 27, 15.5, and 14.3 kilodaltons (kDa) were found to be encoded in that order by the F1845 determinant. The nucleotide sequence of the 14.3-kDa subunit gene was determined and found to share extensive homology in its signal sequence with the gene encoding the structural subunit of the AFA-1 hemagglutinin of a uropathogenic E. coli strain (A. Labigne-Roussel, M.A. Schmidt, W. Walz, and S. Falkow, J. Bacteriol. 162:1285-1292, 1985) but not in the region encoding the mature protein. Southern blot hybridizations indicated that the F1845 determinants are of chromosomal origin. Hybridization studies using a probe from the region encoding the 95-kDa polypeptide indicated that related sequences may be plasmid associated in some strains and chromosomal in others. Additional hybridization studies of E. coli isolates possessing sequence homology to the F1845 determinant suggest that the sequences in the 5' region of the F1845 structural subunit gene are more highly conserved than sequences in the 3' region.  相似文献   

12.
A single gene nuclear yeast mutant was isolated whose mitochondrial F1-ATPase was resistant to the specific F1 inhibitor aurovertin. The mutant enzyme was not cross-resistant to other F1 inhibitors. The binding of aurovertin to F1 and to the two largest F1 subunits (alpha and beta) was measured by enhancement of aurovertin fluorescence. Aurovertin bound to wild type F1-ATPase and to its monomeric beta subunit with about the same binding constant. It failed to bind to wild type alpha subunit or to either F1 or F1 subunits from the mutant. The aurovertin-resistant mutant thus contains an altered nuclear gene which specifies the structure of the beta subunit of F1.  相似文献   

13.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system and it acts at the GABA(A) and GABA(B) receptors. A possible role for the GABA(A) receptors in alcohol action has been derived from in vitro cell models, animal studies and human research. GABA(A) subunit mRNA expression in cell models has suggested that the long form of the gamma2 subunit is essential for ethanol enhanced potentiation of GABA(A) receptors, by phosphorylation of a serine contained within the extra eight amino acids. Several animal studies have demonstrated that alterations in drug and alcohol responses may be caused by amino-acid differences at the GABA(A)alpha6 and GABA(A)gamma2 subunits. An Arg(100)/Glu(100) change at the GABA(A)alpha6 subunit conferring altered binding efficacy of the benzodiazepine inverse agonist Ro 15-4513, was found between the AT (alcohol tolerance) and ANT (alcohol non-tolerance) rats. Several loci related to alcohol withdrawal on mouse chromosome 11 which corresponds to the region containing four GABA(A) subunit (beta2, alpha6, alpha1 and gamma2) genes on human chromosome 5q33-34, were also identified. Gene knockout studies of the role of GABA(A)alpha6 and GABA(A)gamma2 subunit genes in mice have demonstrated an essential role in the modulation of other GABA(A) subunit expression and the efficacy of benzodiazepine binding. Absence of the GABA(A)gamma2 subunit gene has more severe effects with many of the mice dying shortly after birth. Disappointingly few studies have examined the effects of response to alcohol in these gene knockout mice. Human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have a role in the development of alcohol dependence, although their contributions may vary between ethnic group and phenotype. In summary, in vitro cell, animal and human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have an important role in alcohol related phenotypes (300 words).  相似文献   

14.
In Drosophila melanogaster there are two genes which encode the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Gapdh-43E and Gapdh-13F. We have shown that Gapdh-43E codes for the GAPDH subunit with an apparently larger molecular weight while Gapdh-13F encodes the GAPDH subunit having an apparently smaller molecular weight. Immunoblots of sodium dodecyl sulfate gels were used to survey species from throughout the genus and results indicated that two classes of GAPDH subunits are present only in Drosophila species of the melanogaster and takahashi subgroups of the melanogaster group. Only the smaller subunit is found in species of the obscura group while all other species have only a large subunit. Drosophila hydei was analyzed at the DNA level as a representative species of the subgenus Drosophila. The genome of this species has a single Gapdh gene which is localized at a cytogenetic position likely to be homologous to Gapdh-43 E of D. melanogaster. Comparison of its sequence with the sequence of the D. melanogaster Gapdh genes indicates that the two genes of D. melanogaster are more similar to one another than either is to the gene from D. hydei. The Gapdh gene from D. hydei contains an intron following codon 29. Neither Gapdh gene of D. melanogaster has an intron within the coding region. Southern blots of genomic DNA were used to determine which species have duplicate Gapdh genomic sequences. Gene amplification was used to determine which species have a Gapdh gene that is interrupted by an intron. Species of the subgenus Drosophila have a single Gapdh gene with an intron. Species of the willistoni and saltans groups have a single Gapdh gene that does not contain an intron.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The nucleotide sequence of the operon of the ATPase complex of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, has been determined. In addition to the three previously reported genes for the alpha, beta, and c (proteolipid) subunits of the ATPase complex (Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119-7121), the operon contained three other genes encoding hydrophilic proteins with molecular masses 25, 13, and 7 kDa. The 25-kDa protein is the third largest subunit (gamma), the 13-kDa protein is most likely the fourth subunit (delta), and the 7-kDa protein may correspond to an unknown subunit of the ATPase, tentatively named as epsilon subunit. They do not have significant sequence similarity to subunits in F0F1-ATPases and eukaryotic V-type ATPases, whereas the other three subunits, alpha, beta, and c, have homologous counterparts in F0F1- and V-type ATPases. The order of the genes in the operon was delta alpha beta gamma epsilon c. The S. acidocaldarius ATPase operon differed from the eucabacterial F0F1-ATPase operon in that the former contains only one gene for a hydrophobic subunit at the most downstream part of the operon whereas the latter has three hydrophobic F0 genes preceding five hydrophilic F1 genes.  相似文献   

16.
A nuclear pet mutant of Saccharomyces cerevisiae that is defective in the structural gene for subunit V of cytochrome c oxidase has been identified and used to clone the subunit V gene (COX5) by complementation. This mutant, E4-238 [24], and its revertant, JM110, produce variant forms of subunit V. In comparison to the wild-type polypeptide (Mr = 12,500), the polypeptides from E4-238 and JM110 have apparent molecular weights of 9,500 and 13,500, respectively. These mutations directly alter the subunit V structural gene rather than a gene required for posttranslational processing or modification of subunit V because they are cis-acting in diploid cells; that is, both parental forms of subunit V are produced in heteroallelic diploids formed from crosses between the mutant, revertant, and wild type. Several plasmids containing the COX5 gene were isolated by transformation of JM28, a derivative of E4-238, with DNA from a yeast nuclear DNA library in the vector YEp13. One plasmid, YEp13-511, with a DNA insert of 4.8 kilobases, was characterized in detail. It restores respiratory competency and cytochrome oxidase activity in JM28, encodes a new form of subunit V that is functionally assembled into mitochondria, and is capable of selecting mRNA for subunit V. The availability of mutants altered in the structural gene for subunit V (COX5) and of the COX5 gene on a plasmid, together with the demonstration that plasmid-encoded subunit V is able to assemble into a functional holocytochrome c oxidase, enables molecular genetic studies of subunit V assembly into mitochondria and holocytochrome c oxidase.  相似文献   

17.
18.
Summary The locus coding for the A subunit of coagulation factor XIII (F13A) is strongly linked with the major histocompatibility complex on chromosome 6. The maximum lod score was obtained at recombination fractions of 0.12 in males and 0.40 in females. The data suggest that the F13A locus is distal to HLA, probably within the 6p22 region.  相似文献   

19.
The “a” subunit of human coagulation factor XIII (F13A) exhibits genetic polymorphism defined by four common alleles, F13A*1A, *1B, *2A, and *2B. We have previously suggested on the basis of the isoelectric focusing patterns of the four allele products that point mutations at two separate sites and one intragenic crossing over might be involved in the genes of F13A polymorphism. Here, we report nucleotide substitutions associated with F13A polymorphism. A C/T transition of the second nucelotide of codon 564 in exon 12 is responsible for the difference between F13A*1A and *1B and that between F13A*2A and *2B, and a set of two base changes in codons 650 and 651 in exon 14 leads to the differences between F13A*1A and *2A and those between F13A*1B and *2B. The four combinations of the point mutations at the two exons thus correspond to the four alleles, two of which were generated by the point mutations from ancestral monomorphic gene. The results suggest strongly that intragenic crossing over must be involved in the genesis of the fourth allele. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods discriminating these base changes in exons 12 and 14 are also presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号