首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mammalian telomeres are composed of long tandem arrays of double-stranded telomeric TTAGGG repeats associated with the telomeric DNA-binding proteins, TRF1 and TRF2. TRF1 and TRF2 contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In the budding yeast, telomeric DNA is associated with scRap1p, which has a central DNA-binding domain that contains two structurally related Myb domains connected by a long linker, an N-terminal BRCT domain, and a C-terminal RCT domain. Recently, the human ortholog of scRap1p (hRap1) was identified and shown to contain a BRCT domain and an RCT domain similar to scRap1p. However, hRap1 contained only one recognizable Myb motif in the center of the protein. Furthermore, while scRap1p binds telomeric DNA directly, hRap1 has no DNA-binding ability. Instead, hRap1 is tethered to telomeres by TRF2. Here, we have determined the solution structure of the Myb domain of hRap1 by NMR. It contains three helices maintained by a hydrophobic core. The architecture of the hRap1 Myb domain is very close to that of each of the Myb domains from TRF1, scRap1p and c-Myb. However, the electrostatic potential surface of the hRap1 Myb domain is distinguished from that of the other Myb domains. Each of the minimal DNA-binding domains, containing one Myb domain in TRF1 and two Myb domains in scRap1p and c-Myb, exhibits a positively charged broad surface that contacts closely the negatively charged backbone of DNA. By contrast, the hRap1 Myb domain shows no distinct positive surface, explaining its lack of DNA-binding activity. The hRap1 Myb domain may be a member of a second class of Myb motifs that lacks DNA-binding activity but may interact instead with other proteins. Other possible members of this class are the c-Myb R1 Myb domain and the Myb domains of ADA2 and Adf1. Thus, while the folds of all Myb domains resemble each other closely, the function of each Myb domain depends on the amino acid residues that are located on the surface of each protein.  相似文献   

4.
5.
Two novel myb-like genes (atmyb6 and atmyb7) were isolated from an Arabidopsis thaliana cDNA library. The entire proteins or the Myb domains encoded by the genes were expressed as fusion proteins in Escherichia coli. The DNA-binding domain of the murine c-Myb was also expressed in the same way for use in comparative studies. The fusion proteins were examined for their DNA-binding activity using the animal c-Myb DNA-binding site (MBS) and the binding site of the maize P gene product (PBS). The Myb domain of Atmyb6 bound to PBS more efficiently than to MBS. Complete Atmyb6 and Atmyb7 proteins preferentially bound to PBS but not MBS. This suggests that the in vitro binding consensus sequences for both Atmyb6 and Atmyb7 are similar to PBS. The binding of the Myb domain of Atmyb6 to both PBS and MBS raises the possibility that the protein recognizes multiple sequences in vivo. The third α-helix and three adjacent amino acids in the third repeat (R3) of c-Myb were replaced with the analogous sequence of Atmyb6 to create a chimeric Myb protein. This chimeric protein bound to PBS with a low affinity but failed to bind to MBS. Thus the binding pattern of the chimeric Myb protein is similar to that of the Atmyb6. This result suggests that the last 20 amino acids in the R3 repeat of Atmyb6 play a major role in DNA-binding.  相似文献   

6.
Using a binding site selection procedure, we have found that sequence-specific DNA-binding by the mouse c-myb protein involves recognition of nucleotides outside of the previously identified hexanucleotide motif. Oligonucleotides containing a random nucleotide core were immunoprecipitated in association with c-Myb, amplified by the Polymerase Chain Reaction and cloned in plasmids prior to sequencing. By alignment of sequences it was apparent that additional preferences existed at each of three bases immediately 5' of the hexanucleotide consensus, allowing an extension of the preferred binding site to YGRCVGTTR. The contributions of these 5' nucleotides to binding affinity was established in bandshift analyses with oligonucleotides containing single base substitutions; in particular, it was found that replacement of the preferred guanine at position -2 with any other base greatly reduced c-Myb binding. We found that the protein encoded by the related B-myb gene bound the preferred c-Myb site with similar affinity; however, B-Myb and c-Myb showed distinct preferences for the identity of the nucleotide at position -1 relative to the hexanucleotide consensus. This study demonstrates that the c-Myb DNA-binding site is more extensive than recognised hitherto and points to similar but distinct nucleotide preferences in recognition of DNA by related Myb proteins.  相似文献   

7.
8.
9.
10.
11.
12.
DNA-binding properties of ARID family proteins   总被引:7,自引:0,他引:7  
The ARID (A–T Rich Interaction Domain) is a helix–turn–helix motif-based DNA-binding domain, conserved in all eukaryotes and diagnostic of a family that includes 15 distinct human proteins with important roles in development, tissue-specific gene expression and proliferation control. The 15 human ARID family proteins can be divided into seven subfamilies based on the degree of sequence identity between individual members. Most ARID family members have not been characterized with respect to their DNA-binding behavior, but it is already apparent that not all ARIDs conform to the pattern of binding AT-rich sequences. To understand better the divergent characteristics of the ARID proteins, we undertook a survey of DNA-binding properties across the entire ARID family. The results indicate that the majority of ARID subfamilies (i.e. five out of seven) bind DNA without obvious sequence preference. DNA-binding affinity also varies somewhat between subfamilies. Site-specific mutagenesis does not support suggestions made from structure analysis that specific amino acids in Loop 2 or Helix 5 are the main determinants of sequence specificity. Most probably, this is determined by multiple interacting differences across the entire ARID structure.  相似文献   

13.
14.
Myb-related proteins from plants to humans are characterized by a DNA-binding domain which contains two to three imperfect repeats of approximately 50 amino acids each. Based on the evolutionary conservation of specific residues, secondary structural predictions suggest an arrangement of alpha helices homologous to that seen in the homeodomains, members of the helix-turn-helix family of DNA-binding proteins. We have used molecular modelling in conjunction with site-directed mutagenesis to test the feasibility of this structure. We propose that each Myb repeat consists of three alpha helices packed over a hydrophobic core which is built around the three highly conserved tryptophan residues. The C-terminal helix forms part of the helix-turn-helix motif and can be positioned into the major groove of B-form DNA, allowing prediction of residues critical for specificity of interaction. Modelling also allowed positioning of adjacent repeats around the major groove over an 8 bp binding site.  相似文献   

15.
16.
SWIRM is a conserved domain found in several chromatin-associated proteins. Based on their sequences, the SWIRM family members can be classified into three subfamilies, which are represented by Swi3, LSD1, and Ada2. Here we report the SWIRM structure of human MYb-like, Swirm and Mpn domain-containing protein-1 (MYSM1). The MYSM1 SWIRM structure forms a compact HTH-related fold comprising five alpha-helices, which best resembles the Swi3 SWIRM structure, among the known SWIRM structures. The MYSM1 and Swi3 SWIRM structures are more similar to the LSD1 structure than the Ada2alpha structure. The SWIRM domains of MYSM1 and LSD1 lacked DNA binding activity, while those of Ada2alpha and the human Swi3 counterpart, SMARCC2, bound DNA. The dissimilarity in the DNA-binding ability of the MYSM1 and SMARCC2 SWIRM domains might be due to a couple of amino acid differences in the last helix. These results indicate that the SWIRM family has indeed diverged into three structural subfamilies (Swi3/MYSM1, LSD1, and Ada2 types), and that the Swi3/MYSM1-type subfamily has further diverged into two functionally distinct groups. We also solved the structure of the SANT domain of MYSM1, and demonstrated that it bound DNA with a similar mode to that of the c-Myb DNA-binding domain.  相似文献   

17.
18.
The oncoprotein v-Myb of avian myeloblastosis virus (AMV) transforms myelomonocytic cells by deregulating specific target genes. Previous work has shown that the oncogenic potential of v-Myb was activated by truncation of N- and C-terminal sequences of c-Myb and was further increased by amino acid substitutions in the DNA-binding domain and other parts of the protein. We have analyzed the activation of the chicken lysozyme gene which is strongly activated by c-Myb but not by its oncogenic counterpart v-Myb. We report that Myb acts on two different cis-regulatory elements, the promoter and an enhancer located upstream of the gene. Interestingly, the activation of the enhancer was abolished by the oncogenic amino acid substitutions. We demonstrated that a single Myb-binding site is responsible for the activation of the lysozyme enhancer by Myb and showed that the v-Myb protein of AMV was unable to bind to this site. Our data demonstrate for the first time that oncogenic activation of Myb alters its DNA-binding specificity at a physiological Myb target gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号