首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional unit (FU) RtH2-e from Rapana thomasiana hemocyanin (Hc) was degraded into small fragments with chymotrypsin. The glycopeptides were separated from the non-glycosylated peptides by chromatography on Concanavalin-A-Sepharose and characterized by mass spectrometry. The glycan part of the glycopeptides (all with common peptide stretch of 14 amino acids) consists of the classical trimannosyl-N,N-diacetylchitobiose core for N-glycosylation, predominantly extended with a unique tetrasaccharide that is branched on fucose. In inhibition ELISA experiments, the glycopeptides interfered in the complex formation between FU RtH2-e and rabbit antibodies against Rapana Hc (about 30% of inhibition). The inhibition also was retained after treatment of the glycopeptides with pronase in order to completely destroy the peptide part. The inhibitory effect of the non-glycosylated peptides, on the other hand, was very low. This study thus demonstrates that the glycans attached to FU RtH2-e contribute to the antigenicity of Rapana Hc.  相似文献   

2.
Rapana thomasiana hemocyanin (RtH) is a mixture of two hemocyanin (Hc) isoforms termed RtH1 and RtH2. Both subunit types are built up of eight functional units (FUs). The C-terminal functional unit (RtH1-h) of the Rapana Hc subunit 1 has been isolated by limited trypsinolysis of the subunit polypeptide chain. The oxy- and apo-forms of the unit are characterized by fluorescence spectroscopy. Upon excitation of RtH1-h at 295 or 280 nm, tryptophyl residues buried in the hydrophobic interior of the protein globule determine the fluorescence emission. This is confirmed by quenching experiments with acrylamide, cesium chloride and potassium iodide. The copper-dioxygen system at the binuclear active site quenches the indole emission of the oxy-RtH1-h. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophyl residues in the apo-RtH1-h. The thermal stability of the apo-RtH1-h is characterized fluorimetrically by the "melting" temperature T(m) (65 degrees C) and by the transition temperature T(m) (83 degrees C) obtained by differential scanning calorimetry for oxy-RtH1-h. The results confirm the role of the copper-dioxygen complex for the stabilization of the Hc structure in solution.  相似文献   

3.
In the present study the structures of two glycopeptides (G1 and G1'), isolated from FU RvH(1)-b and two glycopeptides (G2 and G3), isolated from the structural subunit RvH(1) of Rapana venosa hemocyanin, were determined. To structurally characterize the site-specific carbohydrate heterogeneity and binding site of the N-linked glycopeptide(s), a combination of capillary reversed-phase chromatography and ion trap mass spectrometry was used. The amino acid sequences of glycopeptides G1 and G1' determined by Edman degradation and MS/MS sequencing demonstrated that the oligosaccharides are linked to N-glycosylation sites. Two peptides (a glycosylated (G1) and non-glycosylated one) were identified in this fraction and no linkage sites were observed in the latter one. Based on the sequencing of the glycosylated fractions G1, G1', G2 and G3, the carbohydrate structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)[Fuc(alpha1-6)]GlcNAc-R could be identified for glycopeptides G1 and G3, and only the typical core structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)GlcNAc-R was found for G1' and G2. The Fuc residue found in glycopeptides G1 and G3 is attached to N-acetyl-glucosamine of the carbohydrate core, as often found in other glycoproteins.  相似文献   

4.
Hemocyanins of mollusks are high molecular mass glycoproteins with a complex quaternary structure which still remains to be defined in detail for most of its species as far as number, spatial distribution and interactions of their structural units is concerned. In the present study, we isolated the functional units of the structural subunit RvH1 of Rapana venosa hemocyanin, combining enzymatic and non-enzymatic methods. Our results suggest that Hc's carbohydrate moieties play a basic role in the organization of the structural units, resulting from post-translational polymerization of the 50 kDa functional units and involving sugar moieties that link between them.  相似文献   

5.
N-terminal amino acid sequences for the two hemocyanin subunits from the deep-sea crustacean Bathynomus giganteus have been determined by Edman degradation, providing the first sequence information for a hemocyanin from an isopod. In addition, purified hemocyanin from B. giganteus exhibited phenoloxidase activity in the presence of sodium dodecyl sulfate. Although a natural activator has not yet been identified, a preliminary study of the enzyme indicated a K(m) of 5mM for dopamine and an initial rate of 0.1 micromol per min per mg protein, values consistent with a significant role for this enzyme in the innate immune system of B. giganteus. Moreover, after separation of hemolymph by alkaline polyacrylamide gel electrophoresis, the only detectable phenoloxidase activity coincided with the two hemocyanin subunits. The hemocyanin of this primitive crustacean may fulfill dual functions, both as oxygen carrier and as the phenoloxidase crucial for host defense.  相似文献   

6.
Molluscan hemocyanins are very large biological macromolecules and they act as oxygen-transporting glycoproteins. Most of them are glycoproteins with molecular mass around 9000 kDa. The oligosaccharide structures of the structural subunit RvH2 of Rapana venosa hemocyanin (RvH) were studied by sequence analysis of glycans using MALDI-TOF-MS and tandem mass spectrometry on a Q-Trap mass spectrometer after enzymatical liberation of the N-glycans from the polypeptides. Our study revealed a highly heterogeneous mixture of glycans of the compositions Hex0-9 HexNAc2-4 Hex0-3 Pent0-3 Fuc0-3. A novel type of N-glycan, with an internal fucose residue connecting one GalNAc(β1-2) and one hexuronic acid, was detected, as also occurs in subunit RvH1. A glycan with the same structure but with two deoxyhexose residues was observed as a doubly charged ion. Antiviral effects of the native molecules of RvH and also of Helix lucorum hemocyanin (HlH), of their structural subunits, and of the glycosylated functional unit RvH2-e and the non-glycosylated unit RvH2-c on HSV virus type 1 were investigated. Only glycosylated FU RvH2-e exhibits this antiviral activity. The carbohydrate chains of the FU are likely to interact with specific regions of glycoproteins of HSV, through van der Waals interactions in general or with certain amino acid residues in particular. Several clusters of these residues can be identified on the surface of RvH2-e.  相似文献   

7.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

8.
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV–vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60 °C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80 °C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50 kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90 °C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.  相似文献   

9.
The complete amino acid sequence of myoglobin from the triturative stomach of gastropodic molluscBursatella leachii has been determined. It is composed of 146 amino acid residues, is acetylated at the N-terminus, and contains a single histidine residue at position 95 which corresponds to the heme-binding proximal histidine. The E7 distal histidine, which is conserved widely in myoglobins and hemoglobins, is replaced by valine inBursatella myoglobin. The amino acid sequence ofBursatella myoglobin shows strong homology (73–84%) with those ofAplysia andDolabella myoglobins.  相似文献   

10.
The sequence of a globin from a marine invertebrate, the sea cucumberCaudina (Molpadia) arenicola (Echinodermata), is reported. This globin, chain C, is one of four major globins found in coelomic red cells in this organism and is the second to be sequenced. Chain C consists of 157 residues, is amino-terminally acetylated, and has an extended amino-terminal region. This globin shares a 60% sequence identity with the other sequencedC. arenicola globin, D chain (Mauriet al., Biochem. Biophys. Acta 1078, 63–67, 1991), but has a 93.6% identity with a globin from another sea cucumber,Paracaudina chilensis (Suzuki,Biochem. Biophys. Acta, 998, 292–296, 1989).  相似文献   

11.
Summary The amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit (SSU) from Euglena has been established by alignment of the sequence of peptides obtained by cleavage with chymotrypsin, trypsin, Staphylococcus aureus protease or formic acid. The Euglena SSU has 138 amino acids and thus represents longest SSU sequence described so far. Homology is only 41% with cyanobacteria SSU and about 51% with higher plant SSU, whereas it is around 75% between higher plants. The largest homologous portion between all the known SSU sequences is localized in the second half and covers about 20 amino acids. The phylogenetic tree based on known SSU sequences has been established and the rate of amino acid substitution for SSU is estimated to be about 1.35×10-9 per year and per site. Despite heterogeneity in amino acid sequence, we found that the overall secondary structure is fairly well conserved.Abbreviations DABITC Dimethyl amino azobenzene isothiocyanate - HPLC high pressure liquid chromatography - Kd Kilo daltons - LSU large subunit - PITC phenyl isothiocyanate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - SSU small subunit - TFA trifluoric acetic acid  相似文献   

12.
When electrospray ionization mass spectrometry (ESMS) was used to analyze purified bovine gamma E (gamma IVa)-crystallin, it yielded a relative molecular mass (M(r)) of 20.955 +/- 5. This mass is significantly different from that calculated from the published sequence (M(r) 20.894) (White HE et al., 1989, J Mol Biol 207:217-235). Further, ES-MS analysis of the protein after it had been reduced and carboxymethylated indicated the presence of five cysteine residues, whereas the published sequence contains six (Kilby GW et al., 1995, Eur Mass Spectrom 1:203-208). The entire protein sequence of gamma E crystallin has therefore been studied via a combination of ES-MS, ES-MS/MS, and Edman amino acid sequencing. The corrected sequence gives an M(r) of 20.955.3, which matches that obtained by ES-MS analysis of the purified native protein. The corrected sequence is also in agreement with a recent cDNA sequence obtained for a bovine gamma-crystallin by R. Hay (pers. comm.).  相似文献   

13.
Hemolymph of Rapana venosa snails is a complex mixture of biochemically and pharmacologically active components such as peptides and proteins. Antimicrobial peptides are gaining attention as antimicrobial alternatives to chemical food preservatives and commonly used antibiotics. Therefore, for the first time we have explored the isolation, identification and characterisation of 11 novel antimicrobial peptides produced by the hemolymph of molluscs. The isolated peptides from the hemolymph applying ultrafiltration and reverse-phase high-performance liquid chromatography (RP-HPLC) have molecular weights between 3000 and 9500 Da, determined by mass spectrometric analysis. The N-terminal sequences of the peptides identified by Edman degradation matched no peptides in the MASCOT search database, indicating novel proline-rich peptides. UV spectra revealed that these substances possessed the characteristics of protein peptides with acidic isoelectric points. However, no Cotton effects were observed between 190 and 280 nm by circular dichroism spectroscopy. Four of the Pro-rich peptides also showed strong antimicrobial activities against tested microorganisms including Gram-positive and Gram-negative bacteria.  相似文献   

14.
Disintegrins represent a group of cysteine-rich peptides occurring in Crotalidae and Viperidae snake venoms, and are potent antagonists of several integrin receptors. A novel disintegrin, obtustatin, was isolated from the venom of the Vipera lebetina obtusa viper, and represents the first potent and selective inhibitor of the binding of integrin alpha(1)beta(1) to collagen IV. The primary structure of obtustatin contains 41 amino acids and is the shortest disintegrin described to date. Obtustatin shares the pattern of cysteines of other short disintegrins. However, in contrast to known short disintegrins, the integrin-binding loop of obtustatin is two residues shorter and does not express the classical RGD sequence. Using synthetic peptides, a KTS motif was identified as the integrin-binding sequence. A three-dimensional model of obtustatin, built by homology-modeling structure calculations using different templates and alignments, strongly indicates that the novel KTS motif may reside at the tip of a flexible loop.  相似文献   

15.
Summary A fatty acid-binding protein (FABP) from the cytosol of bovine brain was purified by Sephadex G-75 filtration and electrofocusing. The purified protein migrated as a single protein band in 15% polyacrylamide gel electrophoresis with an apparent molecular mass of 14.7 kDa. To ascertain that the purified protein was a FABP, it was submitted to fatty acid-binding tests. Oleic and palmitic acids bound to brain FABP but this was not the case for palmitoyl CoA. By Scatchard analysis the ligand binding values were: Kd = 0.28 µM, Bmax (mol/mol) = 0.6 for oleic acid and Kd = 0.8 µM, Bmax (mol/mol) = 2.1 for palmitic acid. The complete amino acid sequence of the brain FABP was determined and a microheterogeneity was observed. Sequence comparison with other FABPs of known sequence and the observed microheterogeneity demonstrated the presence in brain of several homologous FABPs closely related to heart FABP.This paper corresponds to a communication at the first international workshop on fatty acid binding proteins (Maastricht, the Netherlands, September 4–5, 1989).  相似文献   

16.
The cDNA encoding about half of an antigenic non-surface schistosome parasite protein of M r 97 K has recently been cloned and sequenced (Lanar, Pearce, James and Sher (1986)Science 234:593–596). Analysis of this sequence, together with the properties of the native protein, reveals that this protein is paramyosin, the hitherto unsequenced core protein of myosin filaments in invertebrate muscle. In this report we analyze in more detail the partial amino acid sequence of schistosome paramyosin and describe electron microscope studies of the native protein and its aggregates. We show a close correspondence between the structures of paramyosin and the myosin rod that is required for these proteins to assemble together in muscle thick filaments.  相似文献   

17.
The Rapana thomasiana hemocyanin structural subunit RHSS1 is composed of eight functional dioxygen-binding domains. To determine the multidomain structure, the polypeptide chain of RHSS1 was subjected to limited proteolysis with TPCK-trypsin, elastase and other proteinases. Individual functional units and fragments, containing two or three domains, were isolated and characterized. All domains and fragments were N-terminally sequenced and the order of the dioxygen-binding units in the polypeptide chain of RHSS1 was established.  相似文献   

18.
Myoglobin was isolated from the radular muscle of the chitonLiolophura japonica, a primitive archigastropodic mollusc.Liolophura contains three monomeric myoglobins (I, II, and III), and the complete amino acid sequence of myoglobin I has been determined. It is composed of 145 amino acid residues, and the molecular mass was calculated to be 16,070 D. The E7 distal histidine, which is replaced by valine or glutamine in several molluscan globins, is conserved inLiolophura myoglobin. The autoxidation rate at physiological conditions indicated thatLiolophura oxymyoglobin is fairly stable when compared with other molluscan myoglobins. The amino acid sequence ofLiolophura myoglobin shows low homology (11–21%) with molluscan dimeric myoglobins and hemoglobins, but shows higher homology (26–29%) with monomeric myoglobins from the gastropodic molluscsAplysia, Dolabella, andBursatella. A phylogenetic tree was constructed from 19 molluscan globin sequences. The tree separated them into two distinct clusters, a cluster for muscle myoglobins and a cluster for erythrocyte or gill hemoglobins. The myoglobin cluster is divided further into two subclusters, corresponding to monomeric and dimeric myoglobins, respectively.Liolophura myoglobin was placed on the branch of monomeric myoglobin lineage, showing that it diverged earlier from other monomeric myoglobins. The hemoglobin cluster is also divided into two subclusters. One cluster contains homodimeric, heterodimeric, tetrameric, and didomain chains of erythrocyte hemoglobins of the blood clamsAnadara, Scapharca, andBarbatia. Of special interest is the other subcluster. It consists of three hemoglobin chains derived from the bacterial symbiont-harboring clamsCalyptogena andLucina, in which hemoglobins are supposed to play an important role in maintaining the symbiosis with sulfide bacteria.  相似文献   

19.
Rubredoxin was purified from Desulfovibrio vulgaris Miyazaki. It was sequenced and some of its properties determined. Rubredoxin is composed of 52 amino acids. It is highly homologous to that from D. vulgaris Hildenborough. Its N-methionyl residue is partially formalated. The millimolar absorption coefficients of the rubredoxin at 489 nm and 280 are 8.1 and 18.5, respectively, and the standard redox potential is +5 mB, which is slightly higher than those of other rubredoxins. Rubredoxin, as well as cytochrome c-553, was reduced with lactate by the action of lactate dehydrogenase of this organism, and the rection was stimulated with 2-methyl-1, 4-naphthoquinone. It is suggested that rubredoxin, in collaboration with membraous quinone, functions as natural electron carrier for cytoplasmic lactate dehydrogenase of this organism, whereas cytochrome c-553 plays the same role for periplasmic lactate dehydrogenase.  相似文献   

20.
Hemocyanins are blue copper containing respiratory proteins residing in the hemolymph of many molluscs and arthropods. They can have different molecular masses and quaternary structures. Moreover, several molluscan hemocyanins are isolated with one, two or three isoforms occurring as decameric, didecameric, multidecameric or tubule aggregates. We could recently isolate three different hemocyanin isopolypeptides from the hemolymph of the garden snail Helix lucorum (HlH). These three structural subunits were named αD-HlH, αN-HlH and β-HlH. We have cloned and sequenced their cDNA which is the first result ever reported for three isoforms of a molluscan hemocyanin. Whereas the complete gene sequence of αD-HlH and β-HlH was obtained, including the 5′ and 3′ UTR, 180 bp of the 5′ end and around 900 bp at the 3′ end are missing for the third subunit. The subunits αD-HlH and β-HlH comprise a signal sequence of 19 amino acids plus a polypeptide of 3409 and 3414 amino acids, respectively. We could determine 3031 residues of the αN-HLH subunit. Sequence comparison with other molluscan hemocyanins shows that αD-HlH is more related to Aplysia californicum hemocyanin than to each of its own isopolypeptides. The structural subunits comprise 8 different functional units (FUs: a, b, c, d, e, f, g, h) and each functional unit possesses a highly conserved copper-A and copper-B site for reversible oxygen binding. Potential N-glycosylation sites are present in all three structural subunits. We confirmed that all three different isoforms are effectively produced and secreted in the hemolymph of H. lucorum by analyzing a tryptic digest of the purified native hemocyanin by MALDI-TOF and LC-FTICR mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号