首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
半夏凝集素在脂双层形成的阳离子通道   总被引:2,自引:0,他引:2  
施玉梁  王克夷 《生理学报》1992,44(2):142-148
半夏凝集素是从多年生植物三叶半夏的块茎鲜汁中分离纯化的糖结合蛋白,具凝集素活性,与甘露聚糖有专一结合。本工作利用双室系统观察了它对人工脂双层的作用。 人工脂双层由卵磷脂和胆固醇(重量比为4:1)的正癸烷溶液形成。电阻≥10GΩ。在电压箝位下将半夏凝集素(1—4μg/ml)加至系统的一小室,几分钟后即观察到通道样活动噪音,脂双层电阻下降。甘露聚糖对这种变化有明显的对抗作用,加入40μg/ml的甘露聚糖可使脂双层的膜电阻立即从2GΩ恢复到对照水平(≥10GΩ)。在低浓度半夏凝集素和低维持电压下可获得单位电导涨落记录。在100mmol/L对称KCl溶液中记录的半夏凝集素单通道电流的优势电导为35pS。通过测定在非对称盐溶液中的平衡电位,根据Goldman—Hodgkin—Katz电位方程可推算出通道的离子选择性。结果表明,半夏凝集素形成的通道为阳离子通道。  相似文献   

2.
施玉lian  周亦昌 《生理学报》1991,43(2):128-133
本工作利用双室系统观察了金褐霉素对平板脂双层(Planar lipid bilayer)的作用。双室系统包括一个带直径为700μm 小孔的 Teflon 薄膜中隔,和由它隔开的两个充满盐溶液的小室。用脂双层(成膜液为卵磷脂和胆固醇的正癸烷溶液,重量比4∶1)覆盖小孔,在电压箝位下,研究脂双层的电学和通透性质。记录金褐霉素产生的电导变化和单通道电流。实验观察到,在将金褐霉素(终浓度10—20μg/ml)加入小室,20min 左右可记录出通道样活动噪音,脂双层膜电阻下降。它们的发生不依赖于跨膜电位差和离子浓度梯度的存在。将加入的金褐霉素的浓度降低至1.4μg/ml,可获得离散的单位电导涨落的记录。在对称100mmol/L 的 KCl 溶液中,这种单通道活动的优势电导为4—6pS。通过改变两小室的离子浓度,测定平衡电位,可由 Goldmann-Hodgkin-Katz 电场方程推算出通道的离子选择性。结果表明,金褐霉素在脂双层形成的离子通道对 K~+比对 Cl~有较高的通透性(P_K:P_(Ol)≈5.2)。这些结果为金褐霉素增加神经末梢的递质释放,降低肌细胞膜电位,以及为它在临床上的抑菌作用提供了解释。  相似文献   

3.
从菠菜(Spinacia oleracea Mill.)叶中分离获得H~ -ATP酶(CF_0-CF_1)复合体。将CF_0-CF_1重组于平板脂双层上,在电压钳位下,研究CF_0~CF_1的质子传导性能,观察到:(1)当CF_0-CF_1重组于平板脂双层上后,平板膜电阻由10~20GΩ立即下降到1GΩ左右。(2)溶液中蛋白质(CF_0-CF_1)浓度在2mg/L下可记录到单通道电流的涨落,单位电导约在5~10pS。(3)通道电流随膜两侧ΔpH变化而改变,在ΔpH为2~4时,膜电流随ΔpH增加而增大,在ΔpH为4.5时膜电流呈现回落。(4)质子传导抑制剂Dicyclohexyl-carbodiimide(DCCD)显示出迅速地且不可逆地阻断通道电流。(5)无金属离子的溶液中,跨膜(BLM)的ΔpH为3时,在0~ 150mV钳位下,镁离子比钙离子所引起的CF_0-CF_1的通道电流要大得多。以上结果不仅表明CF_0-CF_1已成功地组装于人工膜上,而且也显示出镁离子直接参与了质子传导过程。  相似文献   

4.
误食裸鲤卵而致呕吐和腹泻的病例早已有报告,其作用来源于可引起平滑肌收缩的有毒成份。本文作利用卵磷脂和胆固醇形成的脂双层,在电箝位下首次观察到经Sephadex G50初步分离的裸鲤卵的有毒组分改变脂双层的膜电导,形成跨膜离子通道,这个组分至少含有两种分别可在脂双层形成阴离子和阴离子通道的成份。  相似文献   

5.
前一工作表明,从我国广东产金环蛇毒分离的类心脏毒素(即毒素 A 和 B)在一定浓度下引起两栖类和哺乳类动物的心肌,特别是骨胳肌的膜电位持续下降。本工作试图分析这种下降的机制。实验表明在毒素 A 或 B 的作用下,随着蟾蜍骨胳肌膜电位的下降,膜电阻也明显下降,但膜电容保持不变。这种膜电位的下降,不能为预先向溶液中加河豚毒素所防止,也不能为无钠溶液所延缓。这些结果提示,毒素 A 和 B 是通过增加可兴奋膜的通透性,而不是由阻塞 K~ 通道来引起膜电位下降的,也不是或主要不是通过 Na~ 通透性的增加而实现的。  相似文献   

6.
UV-B辐射对蚕豆叶膜脂过氧化的影响及其机制   总被引:23,自引:3,他引:20  
温室种植的吞豆在0(CK),8.82kJ/m2(T1)和12.6kJ/m2(T2)3种剂量的紫外线B(UV-B)辐射引起膜脂变化及其机制的研究结果表明,UV0B处理后,蚕豆叶片中丙二醛(MDA)和H2O2含量升高,膜脂肪酸不饱和度指数(IUFA)降低,脂氧合酶(LOX)活性升高,超氧歧化酶(SOD)活性稍有波动,而3种多胺-腐胺(Put)精胺(Spd)和尸胺(Spn)在照射7天后均有积累,但在处理后期(21d)有所回落,推测由LOX主导的酶促膜过氧化作用和氧自由基引起的非酶促过作用在膜结构的破坏中起重要作用,SOD活性和多胺含量的变化蚕豆对UV-B胁迫的一种适应性生理反应。  相似文献   

7.
Sepharose 4B一步法对金环蛇蛇毒磷脂酶A2的分离纯化   总被引:1,自引:0,他引:1  
查红光  张云 《动物学研究》2001,22(6):433-436
利用经酸处理的Sepharose 4B为层析介质,以含0.2mol/L半乳糖,pH7.4台氏液作为洗脱液,从广西产金环蛇(Bungarus fasciatus)蛇毒中一步分离得到一种磷脂酶A2.用SDS-聚丙烯酰胺凝胶电泳测定其分子量为14 kDa.N端部分序列测定表明,所分离得到的磷脂酶A2其N端16个氨基酸残基序列与已报道的金环蛇蛇毒磷脂酶A2同功酶Ⅵ(Lu & Lo,1978)一致.该酶糖含量较高,为13.4%;具有弱的磷脂酶A2活性,无毒,也无溶血和出血毒活性.  相似文献   

8.
目的观察不同基质对阿萨希毛孢子菌生物膜形成能力的影响。方法在聚芳脂、聚苯乙烯、聚氯乙烯上构建阿萨希毛孢子菌生物膜,在生物膜形成过程中采用XTT法对其活性进行定量分析,倒置显微镜和扫描电镜下观察不同基质上阿萨希毛孢子菌生物膜形态特征。结果 3种基质上均能形成阿萨希毛孢子菌生物膜,且形成广泛的的生物膜。比较成熟期不同基质上形成生物膜的活性有差别(F=14.743,P0.01),活性由高到低为聚芳脂=聚氯乙烯聚苯乙烯。倒置显微镜和扫描电镜下观察发现聚芳脂、聚氯乙烯形成的生物膜可见孢子、菌丝、假菌丝结构,聚苯乙烯上形成以孢子为主要结构的微生物群落。结论阿萨希毛孢子菌可在聚芳脂、聚苯乙烯、聚氯乙烯上形成生物膜,但形成生物膜的能力不同。聚芳脂、聚氯乙烯比聚苯乙烯更易于真菌的黏附;且以菌丝、假菌丝为主要结构的微生物群落活力比单纯孢子的活力强。  相似文献   

9.
生物膜是由蛋白质,脂质以及碳水化合物等组成的超分子体系。一般认为,膜脂是膜的基本骨架,膜蛋白是膜功能的主要体现者。因此,二者的相互作用问题的探讨可以说是生物膜结构与功能研究的一个中心环节。本文先对生物膜的主要组分:膜脂和膜蛋白的概况以及生物膜结构的主要特征——流动性作一扼要介绍,然后就膜脂对膜蛋白,膜蛋白对膜脂的影响分别进行讨论,最后就二者相互作用的研究与医、农方面的联系作些介绍。一、膜脂和膜蛋白的概述 1.膜脂 (1)膜脂的组成据估计生物膜约含100种脂质。膜是一个非常复杂的体系,膜脂组成发生1—2%的变化(例如,胆固醇/磷脂的比值的改变),就足以影响细胞的存活。  相似文献   

10.
牛胰多肽与脂作用时插膜状态的研究   总被引:2,自引:0,他引:2  
利用单层膜和荧光技术,研究牛胰多肽(BPP)和磷脂单分子层及脂质体的相互作用。BPP与磷脂单分子层作用的动力学曲线以及临界插膜压表明它和磷脂,尤其是酸性磷脂有较强的相互作用;荧光研究表明,与脂作用后多肽内源性荧光光谱峰位蓝移,说明发荧光的酪氨酸残基存在由亲水环境向疏水环境的转变。荧光猝灭实验表明多肽与脂作用后,其内源性酪氨酸残基荧光更不容易被碘盐所猝灭,提示酪氨酸残基受到了脂双层的屏蔽作用;自旋标记磷脂的猝灭实验计算结果表明BPP插膜深度在磷脂头部与脂酰链交界处稍内侧  相似文献   

11.
A K(+)-channel protein of the sarcoplasmic reticulum (SR) was purified by assaying the channel activity in a planar lipid bilayer system. The light fraction of SR vesicles was solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and fractionated by an anion-exchange chromatography and followed by gel filtration chromatography and affinity chromatography with concanavalin A. All fractions in each steps were mixed with asolectin solubilized in CHAPS and reconstituted into vesicles by dialysis. The channel activity of each fraction was assayed after the reconstituted vesicles had been fused into a planar lipid bilayer. The final fraction which showed the K(+)-channel activity contained only 100 kDa protein in a silver-stained gel after SDS-PAGE and an anti-Ca(2+)-ATPase antibody did not recognize the protein. The characteristics of the K(+)-channel were identical to those observed in native SR vesicles when using the same method. The channel showed a single-channel conductance of 120 pS in 0.1 M KCl and marked voltage dependence. The channel did not permeate Ca2+ and Cl- and was blocked by neomycin B.  相似文献   

12.
A "membrane bilayer pathway" model, involving ligand partition into the bilayer, lateral diffusion, and receptor binding has been invoked to describe the 1,4-dihydropyridine (DHP) calcium channel antagonist receptor binding mechanism. In an earlier study (Chester et al. 1987. Biophys. J. 52:1021-1030), the diffusional component of this model was examined using an active fluorescence labeled DHP calcium channel antagonist, nisoldipine-lissamine rhodamine B (Ns-R), in purified cardiac sarcolemmal (CSL) lipid multibilayers. Diffusion coefficient measurements on membrane-bound drug and phospholipid at maximum bilayer hydration yielded similar values (3.8 x 10(-8) cm2/s). However, decreases in bilayer hydration resulted in dramatically reduced diffusion coefficient values for both probes with substantially greater impact on Ns-R diffusion. These data suggested that hydration dependent diffusional differences could be a function of relative probe location along the bilayer normal. In this communication, we have addressed the relative effect of the rhodamine substituent on Ns-R diffusion complex by examining the diffusional dynamics of free rhodamine B under the same conditions used to evaluate Ns-R complex and phospholipid diffusion. X-ray diffraction studies were performed to determine the Ns-R location in the membrane and model the CSL lipid bilayer profile structure to give a rationale for the differences in probe diffusional dynamics as a function of interbilayer water space.  相似文献   

13.
The prevention of implant‐associated infection, one the most feared complications in orthopaedic surgery, remains a major clinical challenge and urges development of effective methods to prevent bacterial colonization of implanted devices. Alpha‐helical antimicrobial peptides (AMPs) may be promising candidates in this respect due to their potent and broad‐spectrum antimicrobial activity, their low tendency to elicit resistance and possible retention of efficacy in the immobilized state. The aim of this study was to evaluate the potential of five different helical AMPs, the cathelicidins BMAP‐27 and BMAP‐28, their (1–18) fragments and the rationally designed, artificial P19(9/G7) peptide, for the prevention of orthopaedic implant infections. Peptides were effective at micromolar concentrations against 22 Staphylococcus and Streptococcus isolates from orthopaedic infections, while only BMAP‐28 and to a lesser extent BMAP‐27 were active against Enterococcus faecalis. Peptides in solution showed activities comparable to those of cefazolin and linezolid, on a molar basis, and also a variable capacity to neutralize bacterial lipopolysaccharide, while devoid of adverse effects on MG‐63 osteoblast cells at concentrations corresponding to the MIC. The (1–18) BMAP fragments and P19(9/G7) were selected for further examination, based on better selectivity indices, and showed effectiveness in the presence of hyaluronic acid and in synovial fluid, while human serum affected their activity to variable extents, with BMAP‐27(1–18) best retaining activity. This peptide was immobilized on streptavidin–resin beads and retained activity against reference Staphylococcus epidermidis and Staphylococcus aureus strains, with negligible toxicity towards osteoblasts, underlining its potential for the development of infection‐resistant biomaterials for orthopaedic application. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Mitochondrial ATP-regulated potassium (mitoKATP) channels play an important role in cardioprotection. Single channel activity was measured after reconstitution of inner mitochondrial membranes from bovine myocardium into a planar lipid bilayer. After incorporation, the potassium channel was recorded with a mean conductance of 103+/-9 pS. The channel activity was inhibited by ATP/Mg and activated by GDP. Magnesium ions alone affected, in a dose dependent manner, both the channel conductance and the open probability. Magnesium ions regulated the mitoKATP channel only when added to the trans compartment. We conclude that Mg2+ regulates the cardiac mitoKATP channel from the matrix site by affecting both the channel conductance and gating.  相似文献   

15.
Summary A potassium-specific tonoplast channel was identified by reconstitution of tonoplast polypeptides into planar lipid bilayer membranes. Highly purified tonoplast membranes were solubilized in Triton X-100-containing buffer and fractionated by size-exclusion chromatography. The protein fractions were assayed for ion channel activity in a planar bilayer system, and the potassium channel was routinely recovered in specific fractions corresponding to an apparent molecular mass of 80 kDa. In symmetrical electrolyte solutions of 100 mM potassium chloride, the potassium channel had a single-channel conductance of 72 pS. Substates of the channel with conductances of 17, 33 and 52 pS were frequently observed. After identification of the channel in low or high KCl, addition of sodium acetate or sodium chloride caused only insignificant conductance changes. This result suggested that the channel was not or little permeable for sodium or chloride, whereas it had similar single-channel conductance for rubidium and caesium ions as compared with potassium ions. The channel is presumably responsible for the equilibration of potassium between the vacuole and the cytosol. The role of the channel in the physiology of the barley cell under salt stress is discussed.The authors would like to thank U. Heber for many helpful discussions. This work was supported by grants of the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 176, projects B3 and B7) and by the Fonds der Chemischen Industrie.  相似文献   

16.
For the first time poly- and monoclonal antibodies (class IgM) against the polyene antibiotic amphotericin B were obtained affecting the properties of a channel formed by the antibiotic and cholesterol in a lipid bilayer when amphotericin B was added to the solution at one (cis) side of the membrane. In the case of the symmetric distribution of cholesterol in the lipid bilayer, three molecules of monoclonal antibodies bind firmly to the channel at the trans-side of the membrane, thus strongly increasing the mean lifetime of the channel in the open state, and not changing practically the ion conductance of its open state. The antibodies did not alter the properties of these channels when added at the cis-side of the membrane as well as of the channels formed in the lipid bilayer when amphotericin B was added at both membrane sides. The antibodies obtained did not affect the conductance of channels in which amphotericin B and cholesterol were replaced with their analogs levorin and 5 alpha-androstan-3 beta-one, which points to a high specificity of the immunoglobulins isolated. When cholesterol was present only in the cis-monolayer of the lipid bilayer and was absent in the trans-monolayer, the same monoclonal antibodies when added at the trans-side of the membrane blocked the conductance of the channel formed by adding the antibiotic to the solution at the cis-side of the bilayer. The obtained evidence is of interest in elucidating the general features of interaction of antibodies with the ionic channels of cellular and model membranes.  相似文献   

17.
Diphtheria toxin interaction with membranes has been studied by following the release of a fluorescent dye (calcein) encapsulated within large unilamellar vesicles. Results showed that diphtheria toxin induced temperature- as well as pH-dependent permeability changes in these model membranes. Interestingly, insertion of the "channel-forming" B domain was not sufficient for calcein release, since dye release from vesicles composed of dimyristoyllecithin:cholesterol:dicetylphosphate 4:3:0.8) was completely inhibited at low temperatures which permitted B insertion. Rather, the temperature dependence of calcein release from and A domain insertion into dimyristoyllecithin:cholesterol:dicetyl phosphate vesicles suggest some relationship between "channel formation" and fragment A translocation across membranes. However, the nature of the toxin channel is called into question by our observations that channel size, in addition to activity, was pH-dependent. On the basis of these experiments, it is proposed that the toxin "channel" is the result of localized perturbations in the lipid bilayer at the interface between lipids and inserted toxin molecules that are sufficiently large in fluid membranes at low pH to allow the translocation of fragment A across the bilayer.  相似文献   

18.
In this work, we report the single channel characterization of a voltage gated cationic channel from rough endoplasmic reticulum (RER) membranes of rat hepatocytes incorporated into a planar lipid bilayer. The channel was found to be cation selective with a main conductance of 598+/-20 pS in 200 mM KCl cis/50 mM KCl trans. The channel open probability appeared voltage dependent with a voltage for half activation (V(1/2)) of 38 mV and an effective gating charge z of -6.66. Adding either 4-AP (5 mM) or ATP (2.5 mM) to the side corresponding to the cell internal medium caused a strong inhibition of the channel activity. This channel is likely to be involved in maintaining proper cation homeostasis in the RER of hepatocytes.  相似文献   

19.
The mechanosensitive (MS) ion channel is gated by changes in bilayer deformation. It is functional without the presence of any other proteins and gating of the channel has been successfully achieved using conventional patch clamping techniques where a voltage has been applied together with a pressure over the membrane. Here, we have for the first time analyzed the large conducting (MscL) channel in a supported membrane using only an external electrical field. This was made possible using a newly developed technique utilizing a tethered lipid bilayer membrane (tBLM), which is part of an engineered microelectronic array chip. Single ion channel activity characteristic for MscL was obtained, albeit with lower conductivity. The ion channel was gated using solely a transmembrane potential of 300 mV. Computations demonstrate that this amount of membrane potential induces a membrane tension of 12 dyn/cm, equivalent to that calculated to gate the channel in patch clamp from pressure-induced stretching of the bilayer. These results strengthen the supposition that the MscL ion channel gates in response to stress in the lipid membrane rather than pressure across it. Furthermore, these findings illustrate the possibility of using the MscL as a release valve for engineered membrane devices; one step closer to mimicking the true function of the living cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号