首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some effects of decenylsuccinic Acid on isolated corn mitochondria   总被引:2,自引:2,他引:0       下载免费PDF全文
The effects of decenylsuccinic acid on the swelling and respiratory capacities of mitochondria isolated from etiolated corn (Zea mays L., Wf9 × M14) shoots were studied. Decenylsuccinic acid (0.1 mM to 1.0 mM) inhibited the oxidation of succinate and malate-pyruvate, stimulated the oxidation of reduced nicotinamide adenine dinucleotide, and uncoupled phosphorylation. The swelling of isolated corn mitochondria, as determined by percentage of transmittance changes, was stimulated by decenylsuccinic acid in potassium chloride reaction media and in sucrose reaction media without bovine serum albumin. In a diaphorase (2, 6-dichlorophenolindophenol as acceptor) reaction with intact mitochondria, only the dehydrogenation rate of malate was reduced by the addition of decenylsuccinic acid. The dehydrogenation of reduced nicotinamide adenine dinucleotide or of succinate was either not affected or was stimulated depending on the diaphorase reaction medium. The oxygen uptake of mitochondria oxidizing N, N, N′, N′-tetramethyl-p-phenylenediamine diHCl and ascorbate was inhibited at decenylsuccinic acid concentrations greater than 0.5 mM.  相似文献   

2.
Effects of organic acids on ion uptake and retention in barley roots   总被引:5,自引:11,他引:5       下载免费PDF全文
Effects of several organic acids on ion uptake and retention and on respiration in barley roots having low and high KCl contents were assayed by measurements of K+, Na+, Ca2+, Cl, and oxygen uptake. Organic acids with high pKa values increase the permeability of roots to ions and decrease respiration when present in sufficient concentrations at pH 5 but have no inhibitory effects at pH 7. Absence of respiratory inhibition in short times and at lower organic acid concentrations, under conditions that immediately produce a permeability increase, indicate that the permeability change is not a result of respiratory inhibition. Effects of formate, acetate, propionate, and glutarate are attributed to entry of undissociated acid molecules into the effective membranes. Lack of a permeability increase with succinate, which has lower distribution coefficients to lipid solvents than do the aliphatic acids, can be explained by failure of sufficient amounts of the hydrophilic succinic acid molecules to penetrate the membranes involved. These experiments suggest that undissociated acid in root membranes can increase permeability of the roots.  相似文献   

3.
Summary Continuous and batch cultures of Lactobacillus helveticus operated under different conditions were studied with respect to the limitation of growth and lactic acid production by increasing undissociated lactic acid and hydrogen ion concentrations, respectively. In a single-stage continuous culture without pH control a final pH of 3.8 and 65 mm undissociated lactic acid was obtained. In two-stage continuous cultures provided with different growth media and run at different pH values, 65–70 mm free acid was obtained in the second stage. Further batch-culture experiments showed growth limitation at 60–70 mm lactic acid. After growth ceased, production of lactate continued until a lactic acid concentration of about 100 mm was reached; obviously an uncoupling of growth and acid production had occurred. Examining the effect of different concentrations of either lactic acid or hydrochloric acid, added to growing batch cultures of L. helveticus, it was shown that the undissociated lactic acid concentration was responsible for growth limitation and lactic acid production in this organism, whereas the pH value had only an indirect effect.  相似文献   

4.
Abscisic acid is shown to enhance the permeability of crude egg lecithin and asolectin bilayers to water, urea and erythritol although it exhibits no effect on pure synthetic (phosphatidylethanolamine-free) dimyristoylphosphatidylcholine bilayers. Addition of dipalmitoylphosphatidylethanolamine to dimyristoylphosphatidylcholine bilayers at 10 or 20 membrane mole percent makes the membrane permeability responsive to abscisic acid. An abscisic acid-phosphatidylethanolamine interaction is also described for liposome aggregation. Both abscisic acid-induced permeability and aggregation changes are pH dependent with the undissociated form of the hormone exhibiting a greater effect than the dissociated, charged form. Enhancement of erythritol permeability is greater with the physiologically active cis-trans ABA isomer than with the inactive trans-trans isomer.  相似文献   

5.
Summary dl-Malic acid grown cells of Candida sphaerica (anamorph of Kluyveromyces marxianus) formed a saturable transport system that mediated accumulative transport of l(-)malic acid with the following kinetic parameters at pH 5.0: V max, 0.44 nmol l(-)malate·s-1 per milligram dry weight; K m ,0.1 mM l(-)malate. Initial uptake of the acid was accompanied by disappearance of extracellular protons, the rates of which followed Michaelis-Menten kinetics as a function of the acid concentration. Variation with extracellular pH of the K m values, calculated either as the concentrations of anions or of undissociated acid, pointed to anions as the transported form. Furthermore, accumulated free acid suffered rapid efflux after the addition of the protonophore carbonylcyanide-M-chlorophenyl-hydrazone (CCCP). These results suggested that the transport system was a dicarboxylate-proton symporter. The system was inducible and was subject to glucose repression. Succinic, fumaric, -ketoglutaric, oxaloacetic and d-malic acid, but not maleic, malonic, oxalic nor l(+)-tartaric acid, apparently used the same transport system since they acted as competitive inhibitors of l(-)malic acid transport and induced proton movements that followed Michaelis-Menten kinetics. Experiments with glucose-repressed cells showed that undissociated dicarboxylic acid (measured with labelled succinic acid) entered the cells slowly by simple diffusion. The permeability of the cells for undissociated acid increased exponentially with pH, the diffusion constant increasing 100-fold between pH 3.5 and 6.0.  相似文献   

6.
Uptake of 3H-labelled (±)-abscisic acid (ABA) into isolated barley (Hordeum vulgare L.) epidermal cell protoplasts (ECP) was followed over a range of pH values and ABA concentrations. The present results show that ABA uptake is not always linearly correlated with the external concentration of undissociated ABA (ABAH). At pH 7.25, ABA uptake exhibited saturation kinetics with an apparent K m value of 75 mmol·m–3 to tal ABA. This saturable transport component was inhibited by pretreating the protoplasts with 1 mol·m–3 p-chloromercuribenzenesulfonic acid at pH 8.0, conditions that minimized the uptake of this acid sulfhydryl reagent. Moreover, the rate of (±)-[3]HABA uptake was reduced by addition of 0.1 mol·m–3 (±)-ABA to 41%, whereas the same concentration of (±)-ABA was approximately half as effective (46% of the inhibitory effect). Thus, it was concluded that only (±)-ABA competes for an ABA carrier that is located in the epidermal cell plasma membrane. The permeability of the epidermal cell plasma membrane was studied by performing a Collander analysis. At pH 6 the overall plasma-membrane permeability of epidermal cells was similar to that of guard cells but was about two times higher than that of mesophyll cells.Abbreviations ABA abscisic acid - ABA anion of ABA - ABAH undissociated ABA - 2,4-D 2,4-dichlorophenoxyacetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - ECP deepidermal cell protoplast - Kr partition coefficient - Mr relative molecular mass - NEM N-ethylmaleimide - PCMBS p-chloromercuriben zenesulfonic acid - Ps permeability coefficient We are grateful to Barbara Dierich for expert technical assistance, to Prof. H. Gimmler (Lehrstuhl für Botanik I, Universität Würzburg, FRG) for helpful discussions and to the Deutsche Forschungsgemeinschaft (SFB 251, TP 3) for financial support.  相似文献   

7.
Extensive empirical research has been published on the fermentation of vegetables, but little predictive modeling of the process is available. The objectives of this study were to assess the effects of key variables involved in cucumber fermentation and to develop models for predicting the growth of Lactobacillus plantarum in pure and mixed culture fermentations. The growth medium for the studies was cucumber juice. The effects of various concentrations of lactic, acetic, and hydochloric acids and sodium chloride on growth at 30° C were determined in batch culture. Limiting conditions for growth were pH 3.37 (lower limit), 69 mm undissociated lactic acid, 150 mm undissociated acetic acid, or 11.8% NaCl. Acetic acid was stimulatory to growth at low concentrations (up to 40 mm) but inhibitory at higher concentrations. Lactic acid was more inhibitory than acetic acid, whether total or undissociated concentrations were used as the basis of comparison. A predictive equation for specific growth rate was developed, tested, and shown to predict growth of L. plantarum in batch processes reasonably well.Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U. S. Department of Agriculture or North Carolina Agricultural Research Service, nor does it imply approval to the exclusion of other products that may be suitable Correspondence to: H. P. Fleming  相似文献   

8.
In glucose-grown cells of Saccharomyces cerevisiae IGC 4072, acetic acid enters only by simple diffusion of the undissociated acid. In these cells, ethanol and other alkanols enhanced the passive influx of labelled acetic acid. The influx of the acid followed first-order kinetics with a rate constant that increased exponentially with the alcohol concentration, and an exponential enhancement constant for each alkanol was estimated. The intracellular concentration of labelled acetic acid was also enhanced by alkanols, and the effect increased exponentially with alcohol concentration. Acetic acid is transported across the plasma membrane of acetic acid-, lactic acid-, and ethanol-grown cells by acetate-proton symports. We found that in these cells ethanol and butanol inhibited the transport of labelled acetic acid in a noncompetitive way; the maximum transport velocity decreased with alcohol concentration, while the affinity of the system for acetate was not significantly affected by the alcohol. Semilog plots of Vmax versus alcohol concentration yielded straight lines with negative slopes from which estimates of the inhibition constant for each alkanol could be obtained. The intracellular concentration of labelled acid was significantly reduced in the presence of ethanol or butanol, and the effect increased with the alcohol concentration. We postulate that the absence of an operational carrier for acetate in glucose-grown cells of S. cerevisiae, combined with the relatively high permeability of the plasma membrane for the undissociated acid and the inability of the organism to metabolize acetic acid, could be one of the reasons why this species exhibits low tolerance to acidic environments containing ethanol.  相似文献   

9.
Inhibition of the fermentation of propionate to methane and carbon dioxide by hydrogen, acetate, and propionate was analyzed with a mesophilic propionate-acclimatized sludge that consisted of numerous flocs (size, 150 to 300 μm). The acclimatized sludge could convert propionate to methane and carbon dioxide stoichiometrically without accumulating hydrogen and acetate in a propionate-minimal medium. Inhibition of propionate utilization by propionate could be analyzed by a second-order substrate inhibition model (shown below) given that the substrate saturation constant, Ks, was 15.9 μM; the substrate inhibition constant, Ki, was 0.79 mM; and the maximum specific rate of propionate utilization, qm, was 2.15 mmol/g of mixed-liquor volatile suspended solids (MLVSS) per day: qs = qmS/[Ks + S + (S2/Ki)], where qs is the specific rate of propionate utilization and S is the initial concentration of undissociated propionic acid. For inhibition by hydrogen and acetate to propionate utilization, a noncompetitive product inhibition model was used: qs = qm/[1 + (P/Kp)n], where P is the initial concentration of hydrogen or undissociated acetic acid and Kp is the inhibition constant. Kinetic analysis gave, for hydrogen inhibition, Kp(H2) = 0.11 atm (= 11.1 kPa, 71.5 μM), qm = 2.40 mmol/g of MLVSS per day, and n = 1.51 and, for acetate inhibition, Kp(HAc) = 48.6 μM, qm = 1.85 mmol/g of MLVSS per day, and n = 0.96. It could be concluded that the increase in undissociated propionic acid concentration was a key factor in inhibition of propionate utilization and that hydrogen and acetate cooperatively inhibited propionate degradation, suggesting that hydrogenotrophic and acetoclastic methanogens might play an important role in enhancing propionate degradation to methane and carbon dioxide.  相似文献   

10.
Effects of 2,4-dinitrophenol on membrane lipids of roots   总被引:2,自引:1,他引:1       下载免费PDF全文
Previous work has shown that the undissociated form of 2,4-dinitrophenol (DNP) increases the permeability of barley (Hordeum vulgare var. trebi) roots to ions. The present studies were undertaken to determine whether the effects of undissociated DNP were directly on membrane lipids. Relative amounts of the principal fatty acids from the lipids of barley root membranes were assayed as a function of DNP concentration, pH, and time of treatment under conditions similar to the previous studies of DNP effects on permeability. Undissociated DNP increases the proportions of palmitic and oleic acids and decreases linoleic and linolenic acids with no changes in the amounts of total fatty acids. The effects are immediate, as are the effects on permeability. Only the undissociated DNP is effective. Anionic DNP has no effect, although it is the major species taken up by the roots both at pH 5 and pH 7. DNP has no effect on respiration at either pH, indicating that undissociated DNP effects are on the membranes and not a general metabolic effect. The close parallelism between the effects of DNP on the composition of membrane lipids and on permeability suggests that the increase in permeability produced by undissociated DNP is due to a direct effect on the root membranes.  相似文献   

11.
Jackson PC 《Plant physiology》1982,70(5):1373-1379
Effects of 2,4-dinitrophenol (DNP) and several other substituted phenols on permeability of barley roots (Hordeum vulgare var. Trebi) to ions were assayed as a function of pH and phenol concentration. Solutions containing 0.1 micromolar undissociated DNP increase the permeability of barley root cells to small ions such as K+, Na+, Ca2+, and Cl with no inhibition of respiration. Undissociated forms of the other phenols increase permeability also, but they are less effective than DNP. Only the undissociated DNP is effective. Anionic DNP does not increase permeability or inhibit ion uptake, although it is the major species accumulated by the roots, both at pH 5 and pH 7. At pH 7, in contrast to pH 5, 10 micromolar DNP has no effect on ion permeability of barley roots yet it uncouples oxidative phosphorylation of barley root mitochondria. This indicates that the all too common use of DNP as a test for active transport or involvement of ATP synthesis can be misleading.  相似文献   

12.
Two Leuconostoc oenos mutant strains unable to metabolize malic acid were differentiated by [U-14C]-labelled L-malate transport assays into a malolactic-enzyme-deficient mutant and a malate-transport-defective mutant. A mathematical analysis of the data from L-malic acid uptake at three pH values (5.2, 4.5, and 3.2) in the malolactic-enzyme-deficient strains suggest two simultaneous uptake mechanisms, presumably a carrier-mediated transport and a passive diffusion for the anionic and the undissociated forms of the acid, respectively. The apparent affinity constant (K m t) and the maximal rate (V m t) values for L-malate active transport were, 12 mM and 43 mol L-malate·mg–1·s–1, respectively. Active transport was constitutive and strongly inhibited by protonophores and by ATPase inhibitors. L-Lactic acid appeared to inhibit L-malic acid transport, suggesting an L-lactate/L-malate exchange. At pH values of 4.5 or above, the passive diffusion of L-malic acid was negligible. However, at pH 3.2, the mean pH of wine, the permeability of the cells to the undissociated acid by simple diffusion could represent more than 50% of total L-malic acid uptake, with a diffusion constant (K D) of 0.1 s–1. Correspondence to: C. Divies  相似文献   

13.
Application of indoleacetic acid (IAA) and other auxins causes cultured radish (Raphanus sativus L. `Scarlet Globe') seedling root segments to produce an increased frequency (FR, no. cm−1) of lateral roots (LR); in the absence of auxin, segments spontaneously form about 6 LR cm−1. A dose-response study has revealed that the increase in FR follows a biphasic Michaelis-Menten relationship with the medium concentration of the undissociated form of IAA ([IAAH]m). The fitted curve for phase I has a maximum response level (Rmax) of 5.2 LR per centimeter above the spontaneous FR; the [IAAH]m giving half-maximal response (C1/2) is 21 nanomolar. For phase II, the values for Rmax and C1/2 are 56 LR per centimeter and 11 micromolar, respectively. The response is variable in the transition concentration region between the two phases; in that region (but not, or much less commonly, at higher or lower [IAAH]m), LR initiation may resume or continue after the first day. At and above 100 micromolar [IAAH]m, the roots are hyperstimulated and generally fail to respond. The developmental stage of LR formed in medium with very low [IAAH]m (10 nanomolar) is enhanced compared to LR formed in medium lacking auxin; the stage is diminished at higher auxin levels, in inverse correlation with FR. Trends in the responses to NAA and IBA were similar, but NAA required only 0.03 times the dose of IAA, while IBA required 6 times the dose of IAA. These findings may be of use in a search for possible auxin receptors involved with LR initiation.  相似文献   

14.
The effects of acetic acid and extracellular pH (pHex) on the intracellular pH (pHi) of nonfermenting, individual Saccharomyces cerevisiae cells were studied by using a new experimental setup comprising a fluorescence microscope and a perfusion system. S. cerevisiae cells grown in brewer’s wort to the stationary phase were stained with fluorescein diacetate and transferred to a perfusion chamber. The extracellular concentration of undissociated acetic acid at various pHex values was controlled by perfusion with 2 g of total acetic acid per liter at pHex 3.5, 4.5, 5.6, and 6.5 through the chamber by using a high-precision pump. The pHi of individual S. cerevisiae cells during perfusion was measured by fluorescence microscopy and ratio imaging. Potential artifacts, such as fading and efflux of fluorescein, could be neglected within the experimental time used. At pHex 6.5, the pHi of individual S. cerevisiae cells decreased as the extracellular concentration of undissociated acetic acid increased from 0 to 0.035 g/liter, whereas at pHex 3.5, 4.5, and 5.6, the pHi of individual S. cerevisiae cells decreased as the extracellular concentration of undissociated acetic acid increased from 0 to 0.10 g/liter. At concentrations of undissociated acetic acid of more than 0.10 g/liter, the pHi remained constant. The decreases in pHi were dependent on the pHex; i.e., the decreases in pHi at pHex 5.6 and 6.5 were significantly smaller than the decreases in pHi at pHex 3.5 and 4.5.  相似文献   

15.
Uptake and release of abscisic acid (AbA) by isolated mesophyll cells of Papaver somniferum is characterized by the following observations: (a) Uptake rate is a linear function of the external AbA concentration in the range from 10−6 to 5 × 10−5 molar, and decreases with increasing pH. At any pH, uptake rate is linearly related to the concentration of undissociated abscisic acid, calculated from the pK = 4.7 according to the Henderson-Hasselbalch equation. At low external pH (5.0), AbA accumulation in the cells is about 10-fold. (b) Uptake of AbA is completely inhibited by salts such as KNO2 or sodium acetate, which decrease the pH gradient between medium and cells. KCN or m-chlorocarbonylcyanide phenylhydrazone inhibits AbA uptake only after longer incubation periods (20-40 minutes). (c) Uptake rate as well as equilibrium concentration is significantly higher in light than in darkness. (d) At low external pH, release of AbA from preloaded cells is strongly stimulated by KNO2. It is concluded that AbA is distributed between leaf cells and free space according to pH gradients, with the undissociated abscisic acid being the main penetrating species. Uptake and release occur via diffusion, without participation of a carrier.  相似文献   

16.
The effects of a wide range of metabolic inhibitors on the penetrationof 2,4-dichlorophenoxyacetic acid (2,4-D) into the leaf disksof Phaseolus vulgaris have been studied. While recognizing thelack of specificity of most inhibitors, compounds were chosenwhich are known to affect respiration, phosphorylation, photosynthesis,membrane permeability, protein synthesis, and the binding capacityof membrane systems. They were: fluoride, azide, arsenite, iodoacetate,arsenate, 2,4-dinitrophenol (DNP), 3-(3,4-dichlorophenyl), -I,I-dimethylurea (DCMU), phenylmercuric chloride, octenylsuccinicacid, decenylsuccinic acid, dimethyl sulphoxide, actinomycin-D,chloramphenicol, streptomycin, 5-fluorouracil, cycloheximide,and cetyltrimethylammoniumbromide (CTAB).At sub-toxic levelsall compounds had little or no influence on penetration in darknesssave for iodoacetate and decenylsuccinic acid, which causedsome enhanced entry at 10-4M and 10-3M respectively, and CTABwhich promoted penetration at concentrations known tolower thesurface tension of water.The much greater rate of penetrationof 2,4-D into disks exposed to bright light (16 000 lx) is unaffectedby fluoride, azide, DNP, octenylsuccinic acid, decenylsuccinicacid, dimethyl sulphoxide, or actinomycin-D. It is, however,progressively inhibited by increasing concentrations of arsenite,iodoacetate, arsenate, streptomycin, and 5-fluorouracil. Chloramphenicol,cycloheximide, and CTAB lower the rate of penetration at intermediateconcentrations but at high concentrations the affect is reversed.The most active inhibitors of light-induced penetration areDCMU and phenylmercuric chloride, compounds which block theproduction of ATP.These results are discussed in relation tomechanisms of transport, in particular the structureand stabilityof barriers likely to impede penetration.  相似文献   

17.
After 3 days of exposure to 10−3 and 10−4 M decenylsuccinic acid, winter wheat plants wilted and died. Decenylsuccinate at 10−3 M inhibited 32P uptake by barley roots and wheat roots and resulted in significant (P ≤ 0.05) leakage of previously absorbed 32P and total phosphorus (barley roots). Decenylsuccinate effects on 32P uptake and retention were attributed to increased permeability resulting from injury. Decenylsuccinate at 10−4 M did not inhibit root uptake of 32P but decreased movement into the shoot. This could be interpreted as an indication of reduced transpiration or inhibition of 32P loading into the transpiration stream. Decenylsuccinate did not increase cold hardiness in winter wheat in a nonhardening environment.  相似文献   

18.
In food technology, organic acids (e.g., lactic acid, acetic acid, and citric acid) are popular preservatives. The purpose of this study was to separate the individual effects of the influencing factors pH and undissociated lactic acid on Listeria innocua inactivation. Therefore, the inactivation process was investigated under controlled, initial conditions of pH (pH0) and undissociated lactic acid ([LaH]0). The resulting inactivation curves consisted of a (sometimes negligible) shoulder period followed by a descent phase. In a few cases, a tailing phase was observed. Depending on the conditions, the descent phase contained one or two log-linear parts or had a convex or concave shape. In addition, the inactivation process was characterized by a certain variability, dependent on the severity of the conditions. Furthermore, in the neighborhood of the growth/no growth interface sometimes contradictory observations occurred. Overall, the individual effects of the influencing factors pH and undissociated lactic acid could clearly be distinguished and were also apparent based on fluorescence microscopy. Appropriate model types were developed and enabled prediction of which conditions of pH0 and [LaH]0 are necessary to obtain a predetermined inactivation (number of decimal reductions) within a predetermined time range.  相似文献   

19.
Previous work has shown that undissociated 2,4-dinitrophenol (DNP) both increases the permeability of roots to ions and alters the membrane lipids of barley roots. Anionic DNP is the main entrant form but has no effect on permeability or on the membrane lipids. The amount of anionic DNP taken up by the roots is sufficient, that were it in free solution in the cytoplasm, the DNP would uncouple oxidative phosphorylation, and thereby inhibit ATP synthesis. The present work was undertaken to assess whether DNP alters ATP levels when it is taken up by barley roots. 31P nuclear magnetic resonance spectra were used to monitor, in vivo, levels of ATP, cytoplasmic phosphate, vacuolar phosphate, and other phosphate compounds in barley roots in the presence of 10 micromolar DNP at pH 5 and pH 7. The spectra indicate that no change in the level of ATP or the cytoplasmic pH occurred in the roots in the presence of DNP for as long as 20 hours. Thus, the effects of undissociated DNP are effects directly on the root membranes and do not involve inhibition of ATP synthesis. Furthermore, the results explain why anionic DNP has no effect on ion uptake and accumulation.  相似文献   

20.
The kinetics of the oxygen reaction of Panulirus interruptus hemocyanin have been studied at pH 9.6 under conditions where the protein exists in the undissociated, co-operative state and in the dissociated, non-co-operative state.Temperature-jump relaxation measurements of the undissociated protein at high oxygen saturation levels show one relaxation process which has been assigned to the high oxygen affinity (R) state, the on and off kinetic constants being 3.1 × 107m?1s?1 and 60 s?1, respectively. Stopped-flow measurements of the oxygen dissociation reaction show (1) an autocatalytic time-course of the reaction at pH 9.6 and (2) an increase in the overall oxygen dissociation rate constant, as the pH is decreased from 9.6 to 7.0.Temperature-jump relaxation measurements of the dissociated protein show one relaxation process characterized by a very high oxygen dissociation rate constant (1500 s?1) and a combination constant which is of the same order of magnitude as reported for undissociated protein (kon = 4.6 × 107m?1s?1). The behaviour of dissociated protein can be considered as characteristic of the low oxygen affinity (T) state.The results presented in this paper, together with data available for other hemocyanins as well as hemoglobins, lead to the conclusion that respiratory proteins show a common feature in the kinetic control of co-operative oxygen binding: the stability of the oxygen-protein complex is largely determined by the value of the dissociation rate constant, the oxygen combination process very often appearing to be diffusion controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号