首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying causal genetic variants underlying heritable phenotypic variation is a long‐standing goal in evolutionary genetics. We previously identified several quantitative trait loci (QTL) for five morphological traits in a captive population of zebra finches (Taeniopygia guttata) by whole‐genome linkage mapping. We here follow up on these studies with the aim to narrow down on the quantitative trait variants (QTN) in one wild and three captive populations. First, we performed an association study using 672 single nucleotide polymorphisms (SNPs) within candidate genes located in the previously identified QTL regions in a sample of 939 wild‐caught zebra finches. Then, we validated the most promising SNP–phenotype associations (n = 25 SNPs) in 5228 birds from four populations. Genotype–phenotype associations were generally weak in the wild population, where linkage disequilibrium (LD) spans only short genomic distances. In contrast, in captive populations, where LD blocks are large, apparent SNP effects on morphological traits (i.e. associations) were highly repeatable with independent data from the same population. Most of those SNPs also showed significant associations with the same trait in other captive populations, but the direction and magnitude of these effects varied among populations. This suggests that the tested SNPs are not the causal QTN but rather physically linked to them, and that LD between SNPs and causal variants differs between populations due to founder effects. While the identification of QTN remains challenging in nonmodel organisms, we illustrate that it is indeed possible to confirm the location and magnitude of QTL in a population with stable linkage between markers and causal variants.  相似文献   

2.
Imputation-based association methods provide a powerful framework for testing untyped variants for association with phenotypes and for combining results from multiple studies that use different genotyping platforms. Here, we consider several issues that arise when applying these methods in practice, including: (i) factors affecting imputation accuracy, including choice of reference panel; (ii) the effects of imputation accuracy on power to detect associations; (iii) the relative merits of Bayesian and frequentist approaches to testing imputed genotypes for association with phenotype; and (iv) how to quickly and accurately compute Bayes factors for testing imputed SNPs. We find that imputation-based methods can be robust to imputation accuracy and can improve power to detect associations, even when average imputation accuracy is poor. We explain how ranking SNPs for association by a standard likelihood ratio test gives the same results as a Bayesian procedure that uses an unnatural prior assumption—specifically, that difficult-to-impute SNPs tend to have larger effects—and assess the power gained from using a Bayesian approach that does not make this assumption. Within the Bayesian framework, we find that good approximations to a full analysis can be achieved by simply replacing unknown genotypes with a point estimate—their posterior mean. This approximation considerably reduces computational expense compared with published sampling-based approaches, and the methods we present are practical on a genome-wide scale with very modest computational resources (e.g., a single desktop computer). The approximation also facilitates combining information across studies, using only summary data for each SNP. Methods discussed here are implemented in the software package BIMBAM, which is available from http://stephenslab.uchicago.edu/software.html.  相似文献   

3.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

4.
5.
Scheet P  Stephens M 《PLoS genetics》2008,4(8):e1000147
Quality control (QC) is a critical step in large-scale studies of genetic variation. While, on average, high-throughput single nucleotide polymorphism (SNP) genotyping assays are now very accurate, the errors that remain tend to cluster into a small percentage of "problem" SNPs, which exhibit unusually high error rates. Because most large-scale studies of genetic variation are searching for phenomena that are rare (e.g., SNPs associated with a phenotype), even this small percentage of problem SNPs can cause important practical problems. Here we describe and illustrate how patterns of linkage disequilibrium (LD) can be used to improve QC in large-scale, population-based studies. This approach has the advantage over existing filters (e.g., HWE or call rate) that it can actually reduce genotyping error rates by automatically correcting some genotyping errors. Applying this LD-based QC procedure to data from The International HapMap Project, we identify over 1,500 SNPs that likely have high error rates in the CHB and JPT samples and estimate corrected genotypes. Our method is implemented in the software package fastPHASE, available from the Stephens Lab website (http://stephenslab.uchicago.edu/software.html).  相似文献   

6.
Genome-wide association studies have been performed extensively in the last few years, resulting in many new discoveries of genomic regions that are associated with complex traits. It is often the case that a SNP found to be associated with the condition is not the causal SNP, but a proxy to it as a result of linkage disequilibrium. For the identification of the actual causal SNP, fine-mapping follow-up is performed, either with the use of dense genotyping or by sequencing of the region. In either case, if the causal SNP is in high linkage disequilibrium with other SNPs, the fine-mapping procedure will require a very large sample size for the identification of the causal SNP. Here, we show that by leveraging genetic variability across populations, we significantly increase the localization success rate (LSR) for a causal SNP in a follow-up study that involves multiple populations as compared to a study that involves only one population. Thus, the average power for detection of the causal variant will be higher in a joint analysis than that in studies in which only one population is analyzed at a time. On the basis of this observation, we developed a framework to efficiently search for a follow-up study design: our framework searches for the best combination of populations from a pool of available populations to maximize the LSR for detection of a causal variant. This framework and its accompanying software can be used to considerably enhance the power of fine-mapping studies.  相似文献   

7.
8.
In modern genetic epidemiology studies, the association between the disease and a genomic region, such as a candidate gene, is often investigated using multiple SNPs. We propose a multilocus test of genetic association that can account for genetic effects that might be modified by variants in other genes or by environmental factors. We consider use of the venerable and parsimonious Tukey's 1-degree-of-freedom model of interaction, which is natural when individual SNPs within a gene are associated with disease through a common biological mechanism; in contrast, many standard regression models are designed as if each SNP has unique functional significance. On the basis of Tukey's model, we propose a novel but computationally simple generalized test of association that can simultaneously capture both the main effects of the variants within a genomic region and their interactions with the variants in another region or with an environmental exposure. We compared performance of our method with that of two standard tests of association, one ignoring gene-gene/gene-environment interactions and the other based on a saturated model of interactions. We demonstrate major power advantages of our method both in analysis of data from a case-control study of the association between colorectal adenoma and DNA variants in the NAT2 genomic region, which are well known to be related to a common biological phenotype, and under different models of gene-gene interactions with use of simulated data.  相似文献   

9.
Next-generation sequencing has prompted a surge of discovery of millions of genetic variants from vertebrate genomes. Besides applications in genetic association and linkage studies, a fraction of these variants will have functional consequences. This study describes detection and characterization of 15 million SNPs from chicken genome with the goal to predict variants with potential functional implications (pfVars) from both coding and non-coding regions. The study reports: 183K amino acid-altering SNPs of which 48% predicted as evolutionary intolerant, 13K splicing variants, 51K likely to alter RNA secondary structures, 500K within most conserved elements and 3K from non-coding RNAs. Regions of local fixation within commercial broiler and layer lines were investigated as potential selective sweeps using genome-wide SNP data. Relationships with phenotypes, if any, of the pfVars were explored by overlaying the sweep regions with known QTLs. Based on this, the candidate genes and/or causal mutations for a number of important traits are discussed. Although the fixed variants within sweep regions were enriched with non-coding SNPs, some non-synonymous-intolerant mutations reached fixation, suggesting their possible adaptive advantage. The results presented in this study are expected to have important implications for future genomic research to identify candidate causal mutations and in poultry breeding.  相似文献   

10.
Background

Genome-wide association studies performed on triglycerides (TGs) have not accounted for epigenetic mechanisms that may partially explain trait heritability.

Results

Parent-of-origin (POO) effect association analyses using an agnostic approach or a candidate approach were performed for pretreatment TG levels, posttreatment TG levels, and pre- and posttreatment TG-level differences in the real GAW20 family data set. We detected 22 genetic variants with suggestive POO effects with at least 1 phenotype (P ≤ 10− 5). We evaluated the association of these 22 significant genetic variants showing POO effects with close DNA methylation probes associated with TGs. A total of 18 DNA methylation probes located in the vicinity of the 22 SNPs were associated with at least 1 phenotype and 6 SNP-probe pairs were associated with DNA methylation probes at the nominal level of P < 0.05, among which 1 pair presented evidence of POO effect. Our analyses identified a paternal effect of SNP rs301621 on the difference between pre- and posttreatment TG levels (P = 1.2 × 10− 5). This same SNP showed evidence for a maternal effect on methylation levels of a nearby probe (cg10206250; P = 0.01). Using a causal inference test we established that the observed POO effect of rs301621 was not mediated by DNA methylation at cg10206250.

Conclusions

We performed POO effect association analyses of SNPs with TGs, as well as association analyses of SNPs with DNA methylation probes. These analyses, which were followed by a causal inference test, established that the paternal effect at the SNP rs301621 is induced by treatment and is not mediated by methylation level at cg10206250.

  相似文献   

11.
Multiple loss-of-function (LOF) alleles at the same gene may influence a phenotype not only in the homozygote state when alleles are considered individually, but also in the compound heterozygote (CH) state. Such LOF alleles typically have low frequencies and moderate to large effects. Detecting such variants is of interest to the genetics community, and relevant statistical methods for detecting and quantifying their effects are sorely needed. We present a collapsed double heterozygosity (CDH) test to detect the presence of multiple LOF alleles at a gene. When causal SNPs are available, which may be the case in next generation genome sequencing studies, this CDH test has overwhelmingly higher power than single SNP analysis. When causal SNPs are not directly available such as in current GWA settings, we show the CDH test has higher power than standard single SNP analysis if tagging SNPs are in linkage disequilibrium with the underlying causal SNPs to at least a moderate degree (r2>0.1). The test is implemented for genome-wide analysis in the publically available software package GenABEL which is based on a sliding window approach. We provide the proof of principle by conducting a genome-wide CDH analysis of red hair color, a trait known to be influenced by multiple loss-of-function alleles, in a total of 7,732 Dutch individuals with hair color ascertained. The association signals at the MC1R gene locus from CDH were uniformly more significant than traditional GWA analyses (the most significant P for CDH = 3.11×10−142 vs. P for rs258322 = 1.33×10−66). The CDH test will contribute towards finding rare LOF variants in GWAS and sequencing studies.  相似文献   

12.
Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be performed using SNP genotypes extracted from exome data, removing the need for separate array-based genotyping. We provide software to facilitate such analyses.  相似文献   

13.
Family-based association tests for genomewide association scans   总被引:7,自引:1,他引:6       下载免费PDF全文
With millions of single-nucleotide polymorphisms (SNPs) identified and characterized, genomewide association studies have begun to identify susceptibility genes for complex traits and diseases. These studies involve the characterization and analysis of very-high-resolution SNP genotype data for hundreds or thousands of individuals. We describe a computationally efficient approach to testing association between SNPs and quantitative phenotypes, which can be applied to whole-genome association scans. In addition to observed genotypes, our approach allows estimation of missing genotypes, resulting in substantial increases in power when genotyping resources are limited. We estimate missing genotypes probabilistically using the Lander-Green or Elston-Stewart algorithms and combine high-resolution SNP genotypes for a subset of individuals in each pedigree with sparser marker data for the remaining individuals. We show that power is increased whenever phenotype information for ungenotyped individuals is included in analyses and that high-density genotyping of just three carefully selected individuals in a nuclear family can recover >90% of the information available if every individual were genotyped, for a fraction of the cost and experimental effort. To aid in study design, we evaluate the power of strategies that genotype different subsets of individuals in each pedigree and make recommendations about which individuals should be genotyped at a high density. To illustrate our method, we performed genomewide association analysis for 27 gene-expression phenotypes in 3-generation families (Centre d'Etude du Polymorphisme Humain pedigrees), in which genotypes for ~860,000 SNPs in 90 grandparents and parents are complemented by genotypes for ~6,700 SNPs in a total of 168 individuals. In addition to increasing the evidence of association at 15 previously identified cis-acting associated alleles, our genotype-inference algorithm allowed us to identify associated alleles at 4 cis-acting loci that were missed when analysis was restricted to individuals with the high-density SNP data. Our genotype-inference algorithm and the proposed association tests are implemented in software that is available for free.  相似文献   

14.
Genetic association studies increasingly rely on the use of linkage disequilibrium (LD) tag SNPs to reduce genotyping costs. We developed a software package TAGster to select, evaluate and visualize LD tag SNPs both for single and multiple populations. We implement several strategies to improve the efficiency of current LD tag SNP selection algorithms: (1) we modify the tag SNP selection procedure of Carlson et al. to improve selection efficiency and further generalize it to multiple populations. (2) We propose a redundant SNP elimination step to speed up the exhaustive tag SNP search algorithm proposed by Qin et al. (3) We present an additional multiple population tag SNP selection algorithm based on the framework of Howie et al., but using our modified exhaustive search procedure. We evaluate these methods using resequenced candidate gene data from the Environmental Genome Project and show improvements in both computational and tagging efficiency. AVAILABILITY: The software Package TAGster is freely available at http://www.niehs.nih.gov/research/resources/software/tagster/  相似文献   

15.
Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.  相似文献   

16.
The search for the association between complex diseases and single nucleotide polymorphisms (SNPs) or haplotypes has recently received great attention. For these studies, it is essential to use a small subset of informative SNPs accurately representing the rest of the SNPs. Informative SNP selection can achieve (1) considerable budget savings by genotyping only a limited number of SNPs and computationally inferring all other SNPs or (2) necessary reduction of the huge SNP sets (obtained, e.g. from Affymetrix) for further fine haplotype analysis. A novel informative SNP selection method for unphased genotype data based on multiple linear regression (MLR) is implemented in the software package MLR-tagging. This software can be used for informative SNP (tag) selection and genotype prediction. The stepwise tag selection algorithm (STSA) selects positions of the given number of informative SNPs based on a genotype sample population. The MLR SNP prediction algorithm predicts a complete genotype based on the values of its informative SNPs, their positions among all SNPs, and a sample of complete genotypes. An extensive experimental study on various datasets including 10 regions from HapMap shows that the MLR prediction combined with stepwise tag selection uses fewer tags than the state-of-the-art method of Halperin et al. (2005). AVAILABILITY: MLR-Tagging software package is publicly available at http://alla.cs.gsu.edu/~software/tagging/tagging.html  相似文献   

17.
Robust assessment of genetic effects on quantitative traits or complex-disease risk requires synthesis of evidence from multiple studies. Frequently, studies have genotyped partially overlapping sets of SNPs within a gene or region of interest, hampering attempts to combine all the available data. By using the example of C-reactive protein (CRP) as a quantitative trait, we show how linkage disequilibrium in and around its gene facilitates use of Bayesian hierarchical models to integrate informative data from all available genetic association studies of this trait, irrespective of the SNP typed. A variable selection scheme, followed by contextualization of SNPs exhibiting independent associations within the haplotype structure of the gene, enhanced our ability to infer likely causal variants in this region with population-scale data. This strategy, based on data from a literature based systematic review and substantial new genotyping, facilitated the most comprehensive evaluation to date of the role of variants governing CRP levels, providing important information on the minimal subset of SNPs necessary for comprehensive evaluation of the likely causal relevance of elevated CRP levels for coronary-heart-disease risk by Mendelian randomization. The same method could be applied to evidence synthesis of other quantitative traits, whenever the typed SNPs vary among studies, and to assist fine mapping of causal variants.  相似文献   

18.
Pseudorabies has become endemic and represents a widespread problem for pig production in the world, causing great economic losses associated with reproductive failure and neonatal mortality in the pig industry. Most diseases are the results of mutations of functional genes. Single-nucleotide polymorphisms (SNPs) from the coding regions of the mediators of pro-inflammatory responses or other candidate genes in pigs could indicate their potential involvement in susceptibility or resistance to PrV (pseudorabies virus) infection. There have been no previous association studies with candidate host genes that may influence PrV phenotypic traits. In order to perform association studies to identify genes contributing to PrV phenotypes, the genotypes of five SNPs from four genes (IL10, CXCL12, BAT2 and EHMT2) were determined for 178 sow samples using a high throughput microarray-based methodology. PrV antibodies were tested by enzyme-linked immunosorbent assay (ELISA) to determine whether there was an association between antibody levels and particular genotypes. The association between SNP genotypes and the PrV antibody levels were analysed using the Duncan method of one-way ANOVA procedure using the SAS (Statistical Analysis Systems) software package. The results showed that the glycoprotein E-ELISA antibody level of pigs with genotypes 11(AA) and 12(AG) was significantly higher than in pigs with genotype 22(GG) (P < 0.05) of SNP in the gene EHMT2-SNP2. The SNP of EHMT2 may be an effective potential tool to identify susceptible and resistant animals when used in conjunction with traditional selection methods.  相似文献   

19.
Genomic prediction utilizing causal variants could increase selection accuracy above that achieved with SNPs genotyped by currently available arrays used for genomic selection. A number of variants detected from sequencing influential sires are likely to be causal, but noticeable improvements in prediction accuracy using imputed sequence variant genotypes have not been reported. Improvement in accuracy of predicted breeding values may be limited by the accuracy of imputed sequence variants. Using genotypes of SNPs on a high‐density array and non‐synonymous SNPs detected in sequence from influential sires of a multibreed population, results of this examination suggest that linkage disequilibrium between non‐synonymous and array SNPs may be insufficient for accurate imputation from the array to sequence. In contrast to 75% of array SNPs being strongly correlated to another SNP on the array, less than 25% of the non‐synonymous SNPs were strongly correlated to an array SNP. When correlations between non‐synonymous and array SNPs were strong, distances between the SNPs were greater than separation that might be expected based on linkage disequilibrium decay. Consistently near‐perfect whole‐genome linkage disequilibrium between the full array and each non‐synonymous SNP within the sequenced bulls suggests that whole‐genome approaches to infer sequence variants might be more accurate than imputation based on local haplotypes. Opportunity for strong linkage disequilibrium between sequence and array SNPs may be limited by discrepancies in allele frequency distributions, so investigating alternate genotyping approaches and panels providing greater chances of frequency‐matched SNPs strongly correlated to sequence variants is also warranted. Genotypes used for this study are available from https://www.animalgenome.org/repository/pub/ ;USDA2017.0519/.  相似文献   

20.
While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号