首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
How regional patterning of the neural tube in vertebrate embryos may influence the emergence and the function of neural networks remains elusive. We have begun to address this issue in the embryonic mouse hindbrain by studying rhythmogenic properties of different neural tube segments. We have isolated pre‐ and post‐otic hindbrain segments and spinal segments of the mouse neural tube, when they form at embryonic day (E) 9, and grafted them into the same positions in stage‐matched chick hosts. Three days after grafting, in vitro recordings of the activity in the cranial nerves exiting the grafts indicate that a high frequency (HF) rhythm (order: 10 bursts/min) is generated in post‐otic segments while more anterior pre‐otic and more posterior spinal territories generate a low frequency (LF) rhythm (order: 1 burst/min). Comparison with homo‐specific grafting of corresponding chick segments points to conservation in mouse and chick of the link between the patterning of activities and the axial origin of the hindbrain segment. This HF rhythm is reminiscent of the respiratory rhythm known to appear at E15 in mice. We also report on pre‐/post‐otic interactions. The pre‐otic rhombomere 5 prevents the emergence of the HF rhythm at E12. Although the nature of the interaction with r5 remains obscure, we propose that ontogeny of fetal‐like respiratory circuits relies on: (i) a selective developmental program enforcing HF rhythm generation, already set at E9 in post‐otic segments, and (ii) trans‐segmental interactions with pre‐otic territories that may control the time when this rhythm appears. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

2.
Studies of the sites and mechanisms involved in mammalian respiratory rhythm generation point to two clusters of rhythmic neurons forming a coupled oscillator network within the brainstem. The location of these oscillators, the pre-B?tzinger complex (preB?tC) at vagal level, and the para-facial respiratory group at facial level, probably result from regional patterning schemes specifying neural types in the hindbrain during embryogenesis. Here, we report evidence that the preB?tC oscillator (i) is first active at embryonic stages, (ii) originates in the post-otic hindbrain neural tube and (iii) requires the glutamate vesicular transporter 2 for rhythm generation.  相似文献   

3.
Studies of the sites and mechanisms involved in mammalian respiratory rhythm generation point to two clusters of rhythmic neurons forming a coupled oscillator network within the brainstem. The location of these oscillators, the pre-Bötzinger complex (preBötC) at vagal level, and the para-facial respiratory group at facial level, probably result from regional patterning schemes specifying neural types in the hindbrain during embryogenesis. Here, we report evidence that the preBötC oscillator (i) is first active at embryonic stages, (ii) originates in the post-otic hindbrain neural tube and (iii) requires the glutamate vesicular transporter 2 for rhythm generation.  相似文献   

4.
Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in patterning the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.  相似文献   

5.
Spontaneous activity regulates many aspects of central nervous system development. We demonstrate that in the embryonic chick hindbrain, spontaneous activity is expressed between embryonic days (E) 6–9. Over this period the frequency of activity decreases significantly, although the events maintain a consistent rhythm on the timescale of minutes. At E6, the activity is pharmacologically dependent on serotonin, nACh, GABAA, and glycine input, but not on muscarinic, glutamatergic, or GABAB receptor activation. It also depends on gap junctions, t‐type calcium channels and TTX‐sensitive ion channels. In intact spinal cord‐hindbrain preparations, E6 spontaneous events originate in the spinal cord and propagate into lateral hindbrain tissue; midline activity follows the appearance of lateral activity. However, the spinal cord is not required for hindbrain activity. There are two invariant points of origin of activity along the midline, both within the caudal group of serotonin‐expressing cell bodies; one point is caudal to the nV exit point while the other is caudal to the nVII exit point. Additional caudal midline points of origin are seen in a minority of cases. Using immunohistochemistry, we show robust differentiation of the serotonergic raphe near the midline at E6, and extensive fiber tracts expressing GAD65/67 and the nAChR in lateral areas; this suggests that the medial activity is dependent on serotonergic neuron activation, while lateral activity requires other transmitters. Although there are differences between species, this activity is highly conserved between mouse and chick, suggesting that developmental event(s) within the hindbrain are dependent on expression of this spontaneous activity. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

6.
7.
Sonic Hedgehog (Shh) signaling plays a critical role during dorsoventral (DV) patterning of the developing neural tube by modulating the expression of neural patterning genes. Overlapping activator functions of Gli2 and Gli3 have been shown to be required for motoneuron development and correct neural patterning in the ventral spinal cord. However, the role of Gli2 and Gli3 in ventral hindbrain development is unclear. In this paper, we have examined DV patterning of the hindbrain of Shh(-/-), Gli2(-/-) and Gli3(-/-) embryos, and found that the respective role of Gli2 and Gli3 is not only different between the hindbrain and spinal cord, but also at distinct rostrocaudal levels of the hindbrain. Remarkably, the anterior hindbrain of Gli2(-/-) embryos displays ventral patterning defects as severe as those observed in Shh(-/-) embryos suggesting that, unlike in the spinal cord and posterior hindbrain, Gli3 cannot compensate for the loss of Gli2 activator function in Shh-dependent ventral patterning of the anterior hindbrain. Loss of Gli3 also results in a distinct patterning defect in the anterior hindbrain, including dorsal expansion of Nkx6.1 expression. Furthermore, we demonstrate that ventral patterning of rhombomere 4 is less affected by loss of Gli2 function revealing a different requirement for Gli proteins in this rhombomere. Taken together, these observations indicate that Gli2 and Gli3 perform rhombomere-specific function during DV patterning of the hindbrain.  相似文献   

8.
9.
10.
We describe the regulatory interactions that cause anterior extension of the mouse 5' Hoxb expression domains from spinal cord levels to their definitive boundaries in the posterior hindbrain between embryonic day E10 and E11.5. This anterior expansion is retinoid dependent since it does not occur in mouse embryos deficient for the retinoic acid-synthesizing enzyme retinaldehyde dehydrogenase 2. A retinoic acid response element (RARE) was identified downstream of Hoxb5 and shown to be essential for expression of Hoxb5 and Hoxb8 reporter transgenes in the anterior neural tube. The spatio-temporal activity of this element overlaps with rostral extension of the expression domain of endogenous Hoxb5, Hoxb6 and Hoxb8 into the posterior hindbrain. The RARE and surrounding sequences are found at homologous positions in the human, mouse and zebrafish genome, which supports an evolutionarily conserved regulatory function.  相似文献   

11.
12.
The epibranchial placodes are ectodermal thickenings that generate sensory neurons of the distal ganglia of the branchial nerves. Although significant advances in our understanding of neurogenesis from the placodes have recently been made, the events prior to the onset of neurogenesis remain unclear. We found that chick Sox3 (cSox3) shows a highly dynamic pattern of expression before becoming confined to the final placodes: one pre-otic (geniculate) and three post-otic (one petrosal and two nodose) placodes. A fate-mapping study using lipophilic dyes revealed that all post-otic placodes arise within a single broad cSox3-positive domain, where cSox3 expression and epithelial thickness will be retained only in much smaller final neurogenic placodes. The data presented here suggest that post-otic placodes are remnants of a common primordium defined as a discrete domain of cSox3 expression.  相似文献   

13.
The anteroposterior identity of cranial neural crest cells is thought to be preprogrammed before these cells emigrate from the neural tube. Here we test this assumption by developing techniques for transposing cells in the hindbrain of mouse embryos, using small numbers of cells in combination with genetic and lineage markers. This technique has uncovered a surprising degree of plasticity with respect to the expression of Hox genes, which can be used as markers of different hindbrain segments and cells, in both hindbrain tissue and cranial neural crest cells. Our analysis shows that the patterning of cranial neural crest cells relies on a balance between permissive and instructive signals, and underscores the importance of cell-community effects. These results reveal a new role for the cranial mesoderm in patterning facial tissues. Furthermore, our findings argue against a permanently fixed prepatterning of the cranial neural crest that is maintained by passive transfer of positional information from the hindbrain to the periphery.  相似文献   

14.
15.
Coincident iterated gene expression in the amphioxus neural tube   总被引:1,自引:0,他引:1  
SUMMARY The segmental patterning of the vertebrate hindbrain has been intensely investigated, yet the evolutionary origin of hindbrain segmentation remains unclear. In the vertebrate sister group, amphioxus (Cephalochordata), the embryonic neural tube lacks obvious morphological segmentation, but comparative Hox gene expression analysis has suggested the presence of a region homologous to the vertebrate hindbrain. Does this region contain ancient segmental features shared with the vertebrate hindbrain? To help address this question we cloned the paired‐like amphioxus homeodomain gene shox and found that its expression is segmental in the amphioxus neural tube. We also uncovered a previously uncharacterized iterated neural tube expression pattern of the zinc‐finger gene AmphiKrox. We propose that these genes, along with amphioxus islet and AmphiMnx, share a one‐somite width periodicity of expression in the neural tube, the coincidence of which may reflect an underlying segmental organization. We hypothesize that the segmental patterning of neurons in the neural tube was present in the amphioxus/vertebrate ancestor, but the establishment of a bona fide segmented hindbrain may indeed have arisen in the vertebrate lineage.  相似文献   

16.
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  相似文献   

17.
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of hindbrain rhombomeres and neural crest-derived structures. Transgenic regulatory studies have also begun to characterize enhancers and cis-elements for those mouse and chicken genes that direct restricted patterns of expression in the hindbrain and neural crest. In light of the conserved role of Hoxa2 in neural crest patterning in vertebrates and the similarities between paralogs, it is important to understand the extent to which common regulatory networks and elements have been preserved between species and between paralogs. To investigate this problem, we have cloned and sequenced the intergenic region between Hoxa2 and Hoxa3 in the chick HoxA complex and used it for making comparative analyses with the respective human, mouse, and horn shark regions. We have also used transgenic assays in mouse and chick embryos to test the functional activity of Hoxa2 enhancers in heterologous species. Our analysis reveals that three of the critical individual components of the Hoxa2 enhancer region from mouse necessary for hindbrain expression (Krox20, BoxA, and TCT motifs) have been partially conserved. However, their number and organization are highly varied for the same gene in different species and between paralogs within a species. Other essential mouse elements appear to have diverged or are absent in chick and shark. We find the mouse r3/r5 enhancer fails to work in chick embryos and the chick enhancer works poorly in mice. This implies that new motifs have been recruited or utilized to mediate restricted activity of the enhancer in other species. With respect to neural crest regulation, cis-components are embedded among the hindbrain control elements and are highly diverged between species. Hence, there has been no widespread conservation of sequence identity over the entire enhancer domain from shark to humans, despite the common function of these genes in head patterning. This provides insight into how apparently equivalent regulatory regions from the same gene in different species have evolved different components to potentiate their activity in combination with a selection of core components.  相似文献   

18.
The repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system. Functional studies have revealed that it has roles in axon guidance and laminar patterning in Xenopus and chick embryos, and in controlling cephalic neural tube closure in mouse embryos. The recent identification of neogenin as a receptor for RGM has provided evidence of the diverse functions of this ligand-receptor pair. Re-expression of RGM is observed after injury in the adult human and rat central nervous systems. Inhibition of RGM enhances growth of injured axons and promotes functional recovery after spinal cord injury in rats. Thus, re-expression of embryonic repulsive cues in adult tissues contributes to failure of axon regeneration in the central nervous system.  相似文献   

19.
Understanding the patterning mechanisms that control head development--particularly the neural crest and its contribution to bones, nerves and connective tissue--is an important problem, as craniofacial anomalies account for one-third of all human congenital defects. Classical models for craniofacial patterning argue that the morphogenic program and Hox gene identity of the neural crest is pre-patterned, carrying positional information acquired in the hindbrain to the peripheral nervous system and the branchial arches. Recently, however, plasticity of Hox gene expression has been observed in the hindbrain and cranial neural crest of chick, mouse and zebrafish embryos. Hence, craniofacial development is not dependent on neural crest prepatterning, but is regulated by a more complex integration of cell and tissue interactions.  相似文献   

20.
A previous study revealed that segments of bowel grafted between the neural tube and somites of a younger chick host embryo would induce a unilateral increase in cellularity of the host's neural tube. The current experiments were done to test the hypotheses that muscle tissue in the wall of the gut is responsible for this growth-promoting effect and that the spinal cord enlargement is the result of a mitogenic action on the neuroepithelium. Fragments of skeletal (E8-15) or cardiac muscle (E4-14) were removed from quail embryos and grafted between the neural tube and somites of chick host embryos (E2). Both skeletal and cardiac muscle grafts mimicked the effect of bowel and induced an increase in cell number as well as a unilateral enlargement of the region of the host's neural tube immediately adjacent to the grafts. The growth-promoting effect of muscle-containing grafts was restricted to the neural tube itself and was not seen in proximate dorsal root or sympathetic ganglia. The action of the grafts of muscle was neither species- nor class-specific, since enlargement of the neural tube was observed following implantation of fetal mouse skeletal muscle into quail hosts. Grafts of skeletal muscle or gut increased the number of cells taking up [3H]thymidine in the host's neuroepithelium as early as 9 h following implantation of a graft. The increase in the number of cells entering the S phase of the cell cycle preceded the increase in cell number. These observations demonstrate that muscle-containing tissues can increase the rate of proliferation of neuroepithelial cells when these tissues are experimentally placed together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号