首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed on Monte-Carlo simulated excitatory post-synaptic currents the ability of autoregressive (AR)-model fitting to evaluate their fluctuations. AR-model fitting consists of a linear filter describing the process that generates the fluctuations when driven with a white noise. Its fluctuations provide a filtered version of the signal and have a spectral density depending on the properties of the linear filter. When the spectra of the non-stationary fluctuations of excitatory post-synaptic currents were estimated by fitting AR-models to the segments of current fluctuations, assumed to be stationary and independent, the parameter and spectral estimates were scattered. The scatter was much reduced if the time-variant AR-models were fitted using stochastic adaptive estimators (Kalman, recursive least squares and least mean squares). The ability of time-variant AR-models to accurately fit the current fluctuations was monitored by comparing the fluctuations with predicted fluctuations, and by evaluating the model-learning rate. The median frequency of current fluctuations, which could be rapidly tracked and estimated from the individual quantal events (either Monte-Carlo simulated or recorded from pyramidal neurons of rat hippocampus), rose during the rise phase, before declining to a lower steady-state level during the decay phase of quantal event, whereas the variance showed a broad peak. The closing rate of AMPA channels directly affects the steady-state median frequency, whereas the transient peak can be modulated by a variety of factors—number of molecules released, ability of glutamate molecules to re-enter the synaptic cleft, diffusion constant of glutamate in the cleft and opening rate of AMPA channels. In each case, the effect on the amplitude and decay time of mEPSCs and on the current fluctuations differs. Each factor thus leaves its own kinetic fingerprint arguing that the contribution of such factors can be inferred from the combined kinetic properties of individual mEPSCs.  相似文献   

2.
Species distributional or trait data based on range map (extent‐of‐occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species’ distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing spatial autocorrelation in the errors. However, we found that for presence/absence data the results and conclusions were very variable between the different methods. This is likely due to the low information content of binary maps. Also, in contrast with previous studies, we found that autocovariate methods consistently underestimated the effects of environmental controls of species distributions. Given their widespread use, in particular for the modelling of species presence/absence data (e.g. climate envelope models), we argue that this warrants further study and caution in their use. To aid other ecologists in making use of the methods described, code to implement them in freely available software is provided in an electronic appendix.  相似文献   

3.
Logistic、Mitscherlich、Gompertz方程是一类三参数饱和增长曲线模型,广泛地应用于许多学科领域.本文基于logistic方程饱和值K估计的三点法、四点法,推导出Mitscherlich、Gompertz方程K值的三点法、四点法估计公式,并以南亚热带季风常绿阔叶林中两种优势乔木厚壳桂、黄果厚壳桂种群为例,先用三点法或四点法估计出K值,再通过线性回归与非线性回归相结合的方法,可获得三个增长模型中三个参数的最优无偏估计.实例研究表明,两个优势种群增长数据均符合三个增长模型,但更符合增长曲线呈S形的logistic、Gompertz方程,且以logistic方程最适合于观察;黄果厚壳桂种群增长快于厚壳桂种群.  相似文献   

4.
Summary To maximize parameter estimation efficiency and statistical power and to estimate epistasis, the parameters of multiple quantitative trait loci (QTLs) must be simultaneously estimated. If multiple QTL affect a trait, then estimates of means of QTL genotypes from individual locus models are statistically biased. In this paper, I describe methods for estimating means of QTL genotypes and recombination frequencies between marker and quantitative trait loci using multilocus backcross, doubled haploid, recombinant inbred, and testcross progeny models. Expected values of marker genotype means were defined using no double or multiple crossover frequencies and flanking markers for linked and unlinked quantitative trait loci. The expected values for a particular model comprise a system of nonlinear equations that can be solved using an interative algorithm, e.g., the Gauss-Newton algorithm. The solutions are maximum likelihood estimates when the errors are normally distributed. A linear model for estimating the parameters of unlinked quantitative trait loci was found by transforming the nonlinear model. Recombination frequency estimators were defined using this linear model. Certain means of linked QTLs are less efficiently estimated than means of unlinked QTLs.  相似文献   

5.
Ecologists and oceanographers inform population and ecosystem management by identifying the physical drivers of ecological dynamics. However, different research communities use different analytical tools where, for example, physical oceanographers often apply rank‐reduction techniques (a.k.a. empirical orthogonal functions [EOF]) to identify indicators that represent dominant modes of physical variability, whereas population ecologists use dynamical models that incorporate physical indicators as covariates. Simultaneously modeling physical and biological processes would have several benefits, including improved communication across sub‐fields; more efficient use of limited data; and the ability to compare importance of physical and biological drivers for population dynamics. Here, we develop a new statistical technique, EOF regression, which jointly models population‐scale dynamics and spatially distributed physical dynamics. EOF regression is fitted using maximum‐likelihood techniques and applies a generalized EOF analysis to environmental measurements, estimates one or more time series representing modes of environmental variability, and simultaneously estimates the association of this time series with biological measurements. By doing so, it identifies a spatial map of environmental conditions that are best correlated with annual variability in the biological process. We demonstrate this method using a linear (Ricker) model for early‐life survival (“recruitment”) of three groundfish species in the eastern Bering Sea from 1982 to 2016, combined with measurements and end‐of‐century projections for bottom and sea surface temperature. Results suggest that (a) we can forecast biological dynamics while applying delta‐correction and statistical downscaling to calibrate measurements and projected physical variables, (b) physical drivers are statistically significant for Pacific cod and walleye pollock recruitment, (c) separately analyzing physical and biological variables fails to identify the significant association for walleye pollock, and (d) cod and pollock will likely have reduced recruitment given forecasted temperatures over future decades.  相似文献   

6.
LUCENO  ALBERTO 《Biometrika》1994,81(3):555-565
An expression for the likelihood function of a stationary vectorautoregressive-moving average process is developed. The expressionis very efficient numerically and applies to any stationarybut not necessarily invertible model. In particular, when themultivariate process is autoregressive, the exact likelihoodcan be evaluated with a small number of operations dependingon the order of the autoregressive operator and the processdimension, but not on the size of the observed series. The expressionalso provides an efficient method for the evaluation of theexact likelihood of a partially nonstationary vector autoregressive-movingaverage process, for which the determinant of the autoregressiveoperator has at least one unit root and the remaining rootsare outside the unit circle. This method does not require differencingthe series, so that complications caused by over-differencingthe series, such as noninvertibility and parameter identifiabilityproblems, are avoided. The results for autoregressive modelsare also applied to testing the stationarity and invertibilityof any autoregressive-moving average model with given parametervalues.  相似文献   

7.
Aim Spatial autocorrelation is a frequent phenomenon in ecological data and can affect estimates of model coefficients and inference from statistical models. Here, we test the performance of three different simultaneous autoregressive (SAR) model types (spatial error = SARerr, lagged = SARlag and mixed = SARmix) and common ordinary least squares (OLS) regression when accounting for spatial autocorrelation in species distribution data using four artificial data sets with known (but different) spatial autocorrelation structures. Methods We evaluate the performance of SAR models by examining spatial patterns in model residuals (with correlograms and residual maps), by comparing model parameter estimates with true values, and by assessing their type I error control with calibration curves. We calculate a total of 3240 SAR models and illustrate how the best models [in terms of minimum residual spatial autocorrelation (minRSA), maximum model fit (R2), or Akaike information criterion (AIC)] can be identified using model selection procedures. Results Our study shows that the performance of SAR models depends on model specification (i.e. model type, neighbourhood distance, coding styles of spatial weights matrices) and on the kind of spatial autocorrelation present. SAR model parameter estimates might not be more precise than those from OLS regressions in all cases. SARerr models were the most reliable SAR models and performed well in all cases (independent of the kind of spatial autocorrelation induced and whether models were selected by minRSA, R2 or AIC), whereas OLS, SARlag and SARmix models showed weak type I error control and/or unpredictable biases in parameter estimates. Main conclusions SARerr models are recommended for use when dealing with spatially autocorrelated species distribution data. SARlag and SARmix might not always give better estimates of model coefficients than OLS, and can thus generate bias. Other spatial modelling techniques should be assessed comprehensively to test their predictive performance and accuracy for biogeographical and macroecological research.  相似文献   

8.
Many environmental health and risk assessment techniques and models aim at estimating the fluctuations of selected biological endpoints through the time domain as a means of assessing changes in the environment or the probability of a particular measurement level occurring. In either case, estimates of the sample variance and mean of the sample variance are crucial to making appropriate statistical inferences. The commonly employed statistical techniques for estimating both measures presume the data were generated by a covariance stationary process. In such cases, the observations are treated as independently and identically distributed and classical statistical testing methods are applied. However, if the assumption of covariance stationarity is violated, the resulting sample variance and variance of the sample mean estimates are biased. The bias compromises statistical testing procedures by increasing the probability of detecting significance in tests of mean and variance differences. This can lead to inappropriate decisions being made about the severity of environmental damage. Accordingly, it is argued that data sets be examined for correlation in the time domain and appropriate adjustments be made to the required estimators before they are used in statistical hypothesis testing. Only then can credible and scientifically defensible decisions be made by environmental decision makers and regulators.  相似文献   

9.
We are interested in the estimation of average treatment effects based on right-censored data of an observational study. We focus on causal inference of differences between t-year absolute event risks in a situation with competing risks. We derive doubly robust estimation equations and implement estimators for the nuisance parameters based on working regression models for the outcome, censoring, and treatment distribution conditional on auxiliary baseline covariates. We use the functional delta method to show that these estimators are regular asymptotically linear estimators and estimate their variances based on estimates of their influence functions. In empirical studies, we assess the robustness of the estimators and the coverage of confidence intervals. The methods are further illustrated using data from a Danish registry study.  相似文献   

10.
The problem of the reliability of linear regression models of biological age assessment was studied using an experimental population of patients of a geroprophylactic center. The main factors of the model quality (interpopulation difference, method of approximation of biological age, and methods of approximation of statistical significance of parameters of biological age models) were tested. New equations were derived for calculating biological age. All parameters of these equations meet the requirements of significance. It was shown that if the nonlinear character of age dynamics of biological markers of aging and the statistical significance of model parameter estimates are taken into account, the model of biological age is substantially simplified and its reliability increases.  相似文献   

11.
The present study discusses two variants of linear logistic models for polytomous variables for ?unordered”? and for ?ordered”? categories (polydimensional and one-dimensional model). The ML-estimation equations and the possibilities to test the validity of the model are given for both. A test for goodness-of-fit (external validity) and a test for equality of the parameter estimates for split data (interval validity) are suggested. In addition, statistical tests for the significance of individual parameters on the basis of the information matrix and likelihood ratio tests for one or more parameters are described. The presentation is completed by an empirical example from the area of audiology.  相似文献   

12.
Brownian motion computer simulation was used to test the statistical properties of a spatial autoregressive method in estimating evolutionary correlations between two traits using interspecific comparative data. When applied with a phylogeny of 42 species, the method exhibited reasonable Type I and II error rates. Estimation abilities were comparable to those of independent contrasts and minimum evolution (parsimony) methods, and generally superior to a traditional nonphylogenetic approach (not taking phylogenies into account at all). However, the autoregressive method performed extremely poorly with a smaller phylogeny (15 species) and with nearly independent (“star”) phylogenies. In both of these situations, any phylogenetic autocorrelation present in the data was not detected by the method. Results show how diagnostic techniques (e.g., Moran's I) can be useful in detecting and avoiding such situations, but that such techniques should not be used as definitive evidence that phylogenetic correlation is not present in a set of comparative data. The correction factor (α) proposed by Gittleman and Kot (1990) for use in weighting phylogenetic information had little effect in most analyses of 15 or 42 species with incorrect phylogenetic information, and may require much larger sample sizes before significant improvement is shown. With the sample sizes tested in this study, however, the autoregressive method implemented with this correction factor and correct phylogenetic information led to downwardly biased estimates of the absolute magnitude of the evolutionary correlation between two traits. Cautions and recommendations for implemention of the spatial autoregressive method are given; computer programs to conduct the analyses are available on request.  相似文献   

13.
Borchers DL  Efford MG 《Biometrics》2008,64(2):377-385
Live-trapping capture-recapture studies of animal populations with fixed trap locations inevitably have a spatial component: animals close to traps are more likely to be caught than those far away. This is not addressed in conventional closed-population estimates of abundance and without the spatial component, rigorous estimates of density cannot be obtained. We propose new, flexible capture-recapture models that use the capture locations to estimate animal locations and spatially referenced capture probability. The models are likelihood-based and hence allow use of Akaike's information criterion or other likelihood-based methods of model selection. Density is an explicit parameter, and the evaluation of its dependence on spatial or temporal covariates is therefore straightforward. Additional (nonspatial) variation in capture probability may be modeled as in conventional capture-recapture. The method is tested by simulation, using a model in which capture probability depends only on location relative to traps. Point estimators are found to be unbiased and standard error estimators almost unbiased. The method is used to estimate the density of Red-eyed Vireos (Vireo olivaceus) from mist-netting data from the Patuxent Research Refuge, Maryland, U.S.A. Estimates agree well with those from an existing spatially explicit method based on inverse prediction. A variety of additional spatially explicit models are fitted; these include models with temporal stratification, behavioral response, and heterogeneous animal home ranges.  相似文献   

14.
Markov models of codon substitution are powerful inferential tools for studying biological processes such as natural selection and preferences in amino acid substitution. The equilibrium character distributions of these models are almost always estimated using nucleotide frequencies observed in a sequence alignment, primarily as a matter of historical convention. In this note, we demonstrate that a popular class of such estimators are biased, and that this bias has an adverse effect on goodness of fit and estimates of substitution rates. We propose a “corrected” empirical estimator that begins with observed nucleotide counts, but accounts for the nucleotide composition of stop codons. We show via simulation that the corrected estimates outperform the de facto standard estimates not just by providing better estimates of the frequencies themselves, but also by leading to improved estimation of other parameters in the evolutionary models. On a curated collection of sequence alignments, our estimators show a significant improvement in goodness of fit compared to the approach. Maximum likelihood estimation of the frequency parameters appears to be warranted in many cases, albeit at a greater computational cost. Our results demonstrate that there is little justification, either statistical or computational, for continued use of the -style estimators.  相似文献   

15.
Aims Fits of species-abundance distributions to empirical data are increasingly used to evaluate models of diversity maintenance and community structure and to infer properties of communities, such as species richness. Two distributions predicted by several models are the Poisson lognormal (PLN) and the negative binomial (NB) distribution; however, at least three different ways to parameterize the PLN have been proposed, which differ in whether unobserved species contribute to the likelihood and in whether the likelihood is conditional upon the total number of individuals in the sample. Each of these has an analogue for the NB. Here, we propose a new formulation of the PLN and NB that includes the number of unobserved species as one of the estimated parameters. We investigate the performance of parameter estimates obtained from this reformulation, as well as the existing alternatives, for drawing inferences about the shape of species abundance distributions and estimation of species richness.Methods We simulate the random sampling of a fixed number of individuals from lognormal and gamma community relative abundance distributions, using a previously developed 'individual-based' bootstrap algorithm. We use a range of sample sizes, community species richness levels and shape parameters for the species abundance distributions that span much of the realistic range for empirical data, generating 1?000 simulated data sets for each parameter combination. We then fit each of the alternative likelihoods to each of the simulated data sets, and we assess the bias, sampling variance and estimation error for each method.Important findings Parameter estimates behave reasonably well for most parameter values, exhibiting modest levels of median error. However, for the NB, median error becomes extremely large as the NB approaches either of two limiting cases. For both the NB and PLN,>90% of the variation in the error in model parameters across parameter sets is explained by three quantities that corresponded to the proportion of species not observed in the sample, the expected number of species observed in the sample and the discrepancy between the true NB or PLN distribution and a Poisson distribution with the same mean. There are relatively few systematic differences between the four alternative likelihoods. In particular, failing to condition the likelihood on the total sample sizes does not appear to systematically increase the bias in parameter estimates. Indeed, overall, the classical likelihood performs slightly better than the alternatives. However, our reparameterized likelihood, for which species richness is a fitted parameter, has important advantages over existing approaches for estimating species richness from fitted species-abundance models.  相似文献   

16.
17.
Abstract. In this study we present a new method for predicting the occurrences of species using data from deciduous forests in South Sweden. Complete species lists of vascular plants were compiled from 101 stands and from representative sample plots inside the stands. Soil samples from each stand were collected for determination of pH and nitrogen mineralization. Presence-absence data for species were fitted to the values of four environmental variables - soil moisture, soil reaction (pH), soil nitrogen and light - by means of Linear (Multiple) Logistic Regression (LLR), and Gaussian (Multiple) Logistic Regression (GLR). First, these values were estimated by calculating the weighted averages of Ellenberg indicator values. Second, the estimates for reaction and nitrogen were substituted by the real measurements of pH and mineralized NH4+, keeping the Ellenberg estimates for light and moisture. The models were validated by an independent test data set. In general, the models had high predictive abilities. GLR fitted the species occurrences better to the environmental variables than LLR, but had a lower accuracy of prediction of species occurrence in the stands. The use of soil measurements instead of Ellenberg indicator values did not improve the predictive abilities of the models. The environmental conditions in the stand test set were successfully estimated by using species data from the plots. When using the species lists of the stands instead of plot data, a slightly better predictive ability was obtained. The collection of plot data, however, is easier and less time-consuming. The accuracy of prediction differed considerably between species.  相似文献   

18.
An equation for the rate of photosynthesis as a function of irradiance introduced by T. T. Bannister included an empirical parameter b to account for observed variations in curvature between the initial slope and the maximum rate of photosynthesis. Yet researchers have generally favored equations with fixed curvature, possibly because b was viewed as having no physiological meaning. We developed an analytic photosynthesis‐irradiance equation relating variations in curvature to changes in the degree of connectivity between photosystems, and also considered a recently published alternative, based on changes in the size of the plastoquinone pool. When fitted to a set of 185 observed photosynthesis‐irradiance curves, it was found that the Bannister equation provided the best fit more frequently compared to either of the analytic equations. While Bannister's curvature parameter engendered negligible improvement in the statistical fit to the study data, we argued that the parameter is nevertheless quite useful because it allows for consistent estimates of initial slope and saturation irradiance for observations exhibiting a range of curvatures, which would otherwise have to be fitted to different fixed‐curvature equations. Using theoretical models, we also found that intra‐ and intercellular self‐shading can result in biased estimates of both curvature and the saturation irradiance parameter. We concluded that Bannister's is the best currently available equation accounting for variations in curvature precisely because it does not assign inappropriate physiological meaning to its curvature parameter, and we proposed that b should be thought of as the expression of the integration of all factors impacting curvature.  相似文献   

19.
We use data from the literature to compare two statistical procedures for estimating mass (or size) of quadrupedal dinosaurs and other extraordinarily large animals in extinct lineages. Both methods entail extrapolation from allometric equations fitted to data for a reference group of contemporary animals having a body form similar to that of the dinosaurs. The first method is the familiar one of fitting a straight line to logarithmic transformations, followed by back-transformation of the resulting equation to a two-parameter power function in the arithmetic scale. The second procedure entails fitting a two-parameter power function directly to arithmetic data for the extant forms by nonlinear regression. In the example presented here, the summed circumferences for humerus plus femur for 33 species of quadrupedal mammals was the predictor variable in the reference sample and body mass was the response variable. The allometric equation obtained by back-transformation from logarithms was not a good fit to the largest species in the reference sample and presumably led to grossly inaccurate estimates for body mass of several large dinosaurs. In contrast, the allometric equation obtained by nonlinear regression described data in the reference sample quite well, and it presumably resulted in better estimates for body mass of the dinosaurs. The problem with the traditional analysis can be traced to change in the relationship between predictor and response variables attending transformation, thereby causing measurements for large animals not to be weighted appropriately in fitting models by least squares regression. Extrapolations from statistical models obtained by back-transformation from lines fitted to logarithms are unlikely to yield reliable predictions for body size in extinct animals. Numerous reports on the biology of dinosaurs, including recent studies of growth, may need to be reconsidered in light of our findings.  相似文献   

20.
Monitoring plant growth at the individual level in arrays of environmental conditions is key to understanding plant functioning with strong implications for ecophysiology, population biology and community ecology. This requires non-destructive methods for repeated estimates of individual plant biomass in time. Although allometric equations have been widely used for trees and shrubs, there is currently no general approach for herbaceous species that can be applied across habitats, plant architecture, life stage and leading to transferable equations between contrasted environments. Here we propose a method based on three biometric measurements of the minimum volume occupied by aboveground plant organs. A total of 36 equations were fitted and compared for twelve species of temperate grasslands, corresponding to various volume shapes, scaling functions (linear or power) and including (or not) a life stage effect. The accuracy of the selected equations was compared to similar attempts reported in the literature. We further assessed the across-site transferability of the best allometric equations. The goodness-of-fit of the best equations selected for each species was high (̄R2 = 0.83). The type of selected equations was species-specific, emphasising the benefits of considering a wide range of plant volume shapes and both linear and power functions. Using a comprehensive assessment of allometric equation transferability, we found that site effects could be neglected for eleven out of twelve species. Biomass equations based on the minimum volume proved accurate. The proposed method is easy to implement in any type of habitat, copes with various plant architectures and reduces risks of error measurement compared to previously developed approaches. The method further allows, for the first time, to use a single equation for monitoring the growth trajectory of herbaceous plant individuals in contrasted environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号