首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene amplification in a single cell cycle in Chinese hamster ovary cells   总被引:46,自引:0,他引:46  
We have employed Chinese hamster ovary cells synchronized by mitotic selection to study the replication and amplification of the dihydrofolate reductase gene. Using bromodeoxyuridine to differentially label newly replicated DNA, we show that the dihydrofolate reductase gene is replicated during the first 2 h of S phase, a time when, at most, 10% of the total genome has been replicated. We find that a 6-h inhibition of DNA synthesis by hydroxyurea beginning 2 h after the initiation of S phase markedly increases the frequency with which cells become resistant to a 100-fold increment in methotrexate. When DNA synthesis resumes following removal of the hydroxyurea, virtually all of the DNA replicated prior to inhibition, including the dihydrofolate reductase gene, is rereplicated. Analysis of the dihydrofolate reductase enzyme content of cells 24 h after treatment with hydroxyurea using the fluorescence-activated cell sorter reveals a subset of cells with elevated dihydrofolate reductase. It is this subset that contains additional copies of the dihydrofolate reductase gene and from which emerge highly methotrexate-resistant cells. We propose that the initial event of amplification is the rereplication of a variable, but relatively large, amount of the genome. As cells are subsequently placed under selection, a number of processes, including recombination events and loss of nonselected DNA sequences occur, resulting in what appears as differential gene amplification.  相似文献   

2.
Murine 3T6 selected in increasing concentrations of methotrexate were unstable with respect to dihydrofolate reductase overproduction and methotrexate resistance when they are cultured in the absence of methotrexate. An analysis of the karyotypes of these resistant cells revealed the presence of numerous double minute chromosomes. We observed essentially identical kinetics of loss of dihydrofolate reductase gene sequences in total deoxyribonucleic acid and in deoxyribonucleic acid from fractions enriched in double minute chromosomes and in the numbers of double minute chromosomes per cell during reversion to methotrexate sensitivity, and this suggested that unstably amplified gene sequences were localized on double minute chromosomes. This conclusion ws also supported by an analysis of cell populations sorted according to dihydrofolate reductase enzyme contents, in which relative gene amplification and double minute chromosome content were related proportionally.  相似文献   

3.
4.
Levels of mRNA for the enzyme dihydrofolate reductase (EC 1.5.1.3) were determined in growth-stimulated 3T6 cells which contained wild-type dosage of the gene coding for this enzyme. As in the case of methotrexate-resistent cells having highly amplified levels of genes for dihydrofolate reductase, an increase in dihydrofolate reductase mRNA by a factor of 2–4 can be determined when cells enter the S phase. This increase is inhibited by sodium butyrate (which inhibits growth-stimulated 3T6 cells in mid G1 phase) but not by hydroxyurea (which inhibits in early S phase). We conclude that with the available methods it is possible to study the regulation of S phase-specific enzymes after growth stimulation at the level of the mRNA, even if gene amplification is not possible or desirable.  相似文献   

5.
During stepwise increases in the methotrexate concentration in culture medium, we selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). We studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.  相似文献   

6.
Transient but incomplete suppression of DNA synthesis by a single exposure of an asynchronous population of cells to 5-fluoro-2'-deoxyuridine (FdUrd) increases the frequency of appearance of methotrexate (MTX)-resistant colonies. This increase was greater than 10-fold following a 6-h incubation of cells with 3 microM FdUrd prior to selection in MTX, an interval one-half the normal L1210 cell cycle time. During this period of exposure to FdUrd, DNA synthesis decreased to 25% of control rates and cells accumulated at the G1/S interface. The 6-h incubation with FdUrd resulted in greater than a 2.5-fold increase in the dihydrofolate reductase protein level in the treated cell population, which was accounted for, at least in part, by increased de novo synthesis of the enzyme as assessed by [35S]methionine labeling. This increase in dihydrofolate reductase was associated with a decrease in growth inhibition by MTX. A brief reversal (2 h) of FdUrd-induced DNA synthesis inhibition by the addition of thymidine eliminated the amplification of dihydrofolate reductase and the enhanced emergence of MTX-resistant clones. Beyond this, an analysis of clones that survive MTX selection indicates that the dihydrofolate reductase gene copy in cells spontaneously resistant to 50 nM MTX and those which resulted after the additional pretreatment with FdUrd for 6 h are comparable with a 2-4-fold amplification of enzyme in most clones. These studies demonstrate that FdUrd enhancement of dihydrofolate reductase expression can have a profound effect upon the incidence and expression of MTX resistance and that dihydrofolate reductase gene amplification may be another basis for antagonism between these agents.  相似文献   

7.
We describe the development of resistance to trimetrexate and piritrexim (BW 301U) by a stepwise selection protocol in Chinese hamster ovary cells. Selection in trimetrexate resulted in initial resistance as a result of dihydrofolate reductase gene amplification. Several trimetrexate-resistant variants that display 250-340-fold and 25-50-fold resistance to lipophilic and hydrophilic antifolates, respectively, were established. Increased antifolate resistance was associated with a prominent overexpression of dihydrofolate reductase as determined from the elevated folate reductase activity, cellular labeling with fluorescein-methotrexate, and steady-state mRNA levels as a result of a consistent dihydrofolate reductase gene amplification. However, upon subsequent incremental increases in trimetrexate, further resistance was also associated with amplification of the multidrug resistance gene. This resulted in overexpression of P-glycoprotein and a subsequent 20-50-fold collateral resistance to pleiotropic drugs such as adriamycin, actinomycin D, vinca alkaloids, etoposide, and colchicine. In contrast, initial resistance following selection with low piritrexim concentrations resulted from an unknown mechanism(s) not involving overproduction of either dihydrofolate reductase or P-glycoprotein. This piritrexim resistance was shared with trimetrexate but not with methotrexate. Upon further selection with piritrexim, resistant variants emerge with amplified dihydrofolate reductase but not with multidrug resistance genes. These variants were subsequently resistant to both hydrophilic and lipophilic folate antagonists but retained sensitivity to pleiotropic drugs. The pattern of resistance with methotrexate, trimetrexate, and piritrexim shared a common mechanism, dihydrofolate reductase gene amplification, but differed regarding the additional amplification of the multidrug resistance gene in trimetrexate-resistant cells as well as the emergence of an additional unknown mechanism(s) of resistance to lipid-soluble antifolates upon initial selection in piritrexim.  相似文献   

8.
When grown in the absence of methotrexate, cells carrying unstably amplified dihydrofolate reductase ( dhfr ) genes have a growth disadvantage that is a function of their level of gene amplification. Although this growth disadvantage is thought to drive the loss of unstably amplified dhfr genes in the absence of methotrexate, its mechanism is not understood. The present studies of murine cell lines with different levels of dhfr gene amplification demonstrate that such cells experience increased unbalanced growth (excess RNA and protein content relative to DNA content) with increased levels of dhfr gene amplification. Stathmokinetic analysis of a cell line with unstably amplified dhfr genes showed that the unbalanced growth was associated with a very low rate of G1/S transit, which suggests that amplified DNA sequences may activate a cell cycle checkpoint at the G1/S boundary. Hydroxyurea, which is known to induce rapid elimination of amplified genes at sub-cytotoxic concentrations, also inhibits the cell cycle at the G1/S transition and causes unbalanced growth. Earlier work has shown that hydroxyurea selectively targets those cells within the heterogeneous drug resistant cell populations which have the highest amplified gene dosage. The finding that unstable gene amplification and hydroxyurea have similar effects on the cell suggests that hydroxyurea may achieve this selective targeting by pushing those cells with the highest levels of gene amplification over a critical stress threshold to cause growth arrest or cell death.  相似文献   

9.
10.
Two SV40-transformed human cell lines, GM637, derived from a normal human subject, and GM5849, derived from a patient with ataxia-telangiectasia (A-T), were grown in increasing concentrations of the cytotoxic agent methotrexate (MTX). The GM637 line was naturally more resistant to methotrexate than was GM5849 and, over a 5-month period, became resistant even to very high concentrations (up to 100 microM). The GM5849 line became resistant to 500 nM methotrexate during the same period. However, dot blot and Southern blot analyses showed that both cell lines had amplified their dihydrofolate reductase (dhfr) genes to about the same extent, approx. 50-fold. Using the GM5849 line with amplified dhfr, we attempted to determine if interruption of DNA synthesis by hydroxyurea would cause DNA to be replicated twice within a single cell cycle, as has been reported for Chinese hamster ovary cells. No evidence for such a phenomenon was obtained.  相似文献   

11.
We constructed several retroviruses which transduced a mutant dihydrofolate reductase gene that was resistant to methotrexate inhibition and functioned as a dominant selectable marker. The titer of dihydrofolate reductase-transducing virus produced by virus-producing cells could be increased to very high levels by selection of the cells in increasing concentrations of methotrexate. Helper virus-free dihydrofolate reductase-transducing virus was also generated by using a broad-host-range amphotropic retroviral packaging system. Cell lines producing helper-free dihydrofolate reductase-transducing virus with a titer of 4 X 10(6) per ml were generated. These retroviral vectors should have general utility for high-efficiency transduction of genes in cultured cells and in animals.  相似文献   

12.
Agents that inhibit DNA synthesis increase the frequency of methotrexate resistance and gene amplification in cultured mammalian cells. Chinese hamster ovary cells blocked with hydroxyurea rereplicated dihydrofolate reductase gene sequences within a single cell cycle upon release from the block (Mariani, B.D., and Schimke, R.T. (1984) J. Biol. Chem. 259, 1901-1910). Perturbation of DNA synthesis was postulated to result in misfiring of replicon initiation, subsequent over-replication of DNA sequences, and amplification of specific genes. To test this hypothesis, we have exposed Chinese hamster ovary cells pulsed with bromodeoxyuridine to three agents that inhibit DNA synthesis and enhance gene amplification: UV irradiation, hydroxyurea, and aphidicolin. After release from the block, the progression of cells throughout the cell cycle was analyzed by flow cytometry through simultaneous measurement of total cellular DNA content and bromodeoxyuridine-labeled DNA. Although the cell cycle effects varied depending on the agent used for the block, in all cases a subset of cells that were in S phase at the time of the block exhibited DNA histograms with greater than 4C DNA content at various times after release and prior to cell division. Cells with the excess DNA were approximately 10-fold more resistant to methotrexate compared to treated cells with normal DNA content or untreated cells. Therefore, cells in S phase at the time of the block produce excess DNA per cell prior to division, and this over-replicated DNA may be relevant to gene amplification and drug resistance.  相似文献   

13.
We studied the loss and stabilization of dihydrofolate reductase genes in clones of a methotrexate-resistant murine S-180 cell line. These cells contained multiple copies of the dihydrofolate reductase gene which were associated with double minute chromosomes. The growth rate of these cells in the absence of methotrexate was inversely related to the degree of gene amplification (number of double minute chromosomes). Cells could both gain and lose genes as a result of an unequal distribution of double minute chromosomes into daughter cells at mitosis. The loss of amplified dihydrofolate reductase genes during growth in the absence of methotrexate resulted from the continual generation of cells containing lower numbers of double minute chromosomes. Because of the growth advantage of these cells, they became dominant in the population. We also studied an unstably resistant S-180 cell line (clone) that, after 3 years of continuous growth in methotrexate, generated cells containing stably amplified dihydrofolate reductase genes. These genes were present on one or more chromosomes, and they were retained in a stable state.  相似文献   

14.
PG19T3 mouse melanoma cells were selected for resistance to methotrexate. Nine sub-lines that are resistant to concentrations of methotrexate ranging from 1.27×10–7 M, to 1×10–4M methotrexate were selected and characterised in terms of their content of dihydrofolate reductase activity and their chromosomes. The intracellular level of dihydrofolate reductase activity increases with increasing resistance such that at the highest level of resistance PG19T3:MTXR 10–4 M cells contain approximately 1,000 fold more enzyme activity than the parental PG19T3 cells. It is shown that the enhanced activity is due to an increase in the amount of the enzyme rather than any structural change to the enzyme in resistant cellls. Comparisons of pH activity profiles, profiles under different activating conditions and titrations with methotrexate suggest that the sensitive and resistant cells contain identical dihydrofolate reductases. Analysis of the chromosomes of resistant cells shows the presence of up to 5 large marker chromosomes which contain homogeneously staining regions after G-banding. These same regions stain intensely after C-banding and fluoresce brightly after staining with Hoechst 33258. The size of homogeneously staining regions increases throughout the process of selection. For one marker chromosome this increase may have been mediated via a ring chromosome.  相似文献   

15.
Methotrexate-induced gene amplification increased the expression of biologically active bovine luteinizing hormone (bLH) approximately 11-fold after stable transfection of a line of Chinese hamster ovary cells with genes encoding dihydrofolate reductase and the alpha and beta subunits of bLH. Subsequent analysis of the bovine genes revealed that while the alpha gene was amplified in response to methotrexate selection, the LH beta subunit gene remained unaffected. This effect was probably due to the linkage of the alpha subunit gene with the dihydrofolate reductase gene, the selectable and methotrexate-sensitive marker in the plasmid construct. Prior to methotrexate selection, the concentration of LH beta mRNA and the rate of LH beta synthesis exceeded that of alpha subunit mRNA and protein. Stepwise selection with methotrexate led to a progressive increase in the synthesis and secretion of biologically active bLH. Enhanced production of bLH correlated directly with similar increases in both the steady-state level of alpha subunit mRNA and the relative synthesis rate of alpha subunit protein. Despite progressive changes in alpha subunit concentration, formation of the alpha/beta heterodimer was always incomplete, even when the concentration of alpha subunit exceeded that of LH beta. Cumulatively, these results are consistent with a model in which the extent of steady-state combination of the subunits is determined by the mutual affinity and concentration of both subunits within the lumen of the secretory pathway. This stands in contrast to the long held view that the extent of glycoprotein hormone assembly is limited by the concentration of the beta subunit.  相似文献   

16.
Alexander Varshavsky 《Cell》1981,25(2):561-572
I have tested the hypothesis that at least some of the known tumor promoters may act by facilitating gene amplification. A series of single-step selections for resistance to methotrexate, a specific inhibitor of dihydrofolate reductase (DHFR), was carried out with 3T6 cells in the presence and in the absence of a potent tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Incidence of methotrexate-resistant, colony-forming 3T6 cells is increased up to 100 fold if selection is carried out in the presence of TPA. For a major portion of this new TPA effect to be observed, it is sufficient to add TPA simultaneously with methotrexate. The effect of TPA on the incidence of methotrexate resistance is detectable at less than 20 nM TPA and is maximal at about 200 nM TPA. Phorbol (a non-promoting analog of TPA), thymidine and dimethylsulfoxide each fail to produce any TPA-like effect in this system. DHFR gene copy numbers per cell in clones resistant to 100, 200 and 300 nM methotrexate are approximately 3, 10 and 16 times higher, respectively, than the DHFR gene copy number in the parental 3T6 cells. These numbers do not depend on the presence or absence of TPA during methotrexate selection.  相似文献   

17.
18.
A plasmid containing the K-fgf proto-oncogene linked to the dihydrofolate reductase gene has been constructed, and used in transfection experiments to investigate the effects of K-fgf expression on the tumorigenic and metastatic properties of NIH-3T3 fibroblasts. Analysis of cells transfected with K-fgf revealed that expression of the K-fgf proto-oncogene can, in a single step, induce both tumorigenic and metastatic characteristics, as determined in soft agar cloning experiments, and in tumorigenicity and experimental lung metastasis assays with BALB/c nu/nu mice. Selection for resistance to increasing concentrations of methotrexate lead to the isolation of a series of cell lines containing amplifications of both the dihydrofolate reductase gene and the linked K-fgf gene, which synthesized elevated levels of growth factor message and protein. The most highly resistant and gene amplified cell lines exhibited lower than expected levels of K-fgf mRNA, and also appeared to have down-regulated cell surface growth factor receptors. Further support for the concept that altered K-fgf expression can induce fully malignant and metastatic cells was obtained in experimental metastasis assays, where K-fgf transfected and gene amplified cell lines were highly aggressive.  相似文献   

19.
Pretreatment of 3T6 murine cells with the carcinogen UV radiation or N-acetoxy-N-acetylaminofluorene increased the number of methotrexate-resistant colonies. This carcinogen-induced enhancement was seen only at low toxicities. The enhancement was transient and was observed at its maximum when cells were subjected to methotrexate selection 12 to 24 h after treatment. The addition of a tumor-promoting agent, 12-O-tetradecanoylphorbol-13-acetate, during or after carcinogen treatment further enhanced this effect. A large proportion of the resistant colonies had an increase in the dihydrofolate reductase gene copy number and the relative proportions of colonies with amplified genes were similar, regardless of whether selected cells were untreated, treated with carcinogen, or treated with carcinogen plus promoter. We discuss some of the variables which both enhance the generation and improve the detection of methotrexate-resistant colonies, as well as certain implications of our results for the generation and mechanism of gene amplification.  相似文献   

20.
A modular dihydrofolate reductase gene has been introduced into Chinese hamster ovary cells lacking dihydrofolate reductase. Clones capable of growth in the absence of added nucleosides contain one to five copies of the plasmid DNA integrated into the host genome. Upon stepwise selection to increasing methotrexate concentrations, cells are obtained which have amplified the transforming DNA over several hundredfold. A detailed analysis of the chromosomes in three clones indicated the appearance of cytologically distinct chromosomal regions containing the amplified plasmid DNA which differ in surrounding sequence composition, structure, and location. Two of the clones examined have extensive, homogeneously staining regions. The DNA in these homogeneously staining regions replicates in the early part of the S phase. The amplified plasmid DNA is found associated at or near the ends of chromosomes or on dicentric chromosomes. We propose that integration of DNA may disrupt telomeric structures and facilitate the formation of dicentric chromosomes, which may then undergo bridge breakage-fusion cycles. These phenomena are discussed in relation to DNA transfer experiments and modes of gene amplification and chromosome rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号