首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have conducted a thorough study of the mating system of Lymnaea truncatula, the intermediate host of the liver fluke, using three approaches: (i) a population genetics study, (ii) controlled pairings in the laboratory and (iii) a progeny-array analysis. The population genetics study revealed high levels of inbreeding in the studied populations, with strong clues that the extensive heterozygote deficiencies observed are due to selfing. However, Wahlund effects may also arise due to recolonisations from different source populations after bottleneck events. A breeding experiment helped to disentangle the mating system and the Wahlund effects, and showed that high levels of selfing occurred in isolation and in controlled pairings. However, the progeny-array analysis performed after a high-density culturing of the snails suggests that substantial outcrossing may also occur.  相似文献   

2.
Jarne P  David P 《Heredity》2008,100(4):431-439
We review molecular methods for estimating selfing rates and inbreeding in populations. Two main approaches are available: the population structure approach (PSA) and progeny-array approach (PAA). The PSA approach relies on single-generation samples and produces estimates that integrate the inbreeding history over several generations, but is based on strong assumptions (for example, inbreeding equilibrium). The PSA has classically relied on single-locus inbreeding coefficients averaged over loci. Unfortunately PSA estimates are very sensitive to technical problems such as the occurrence of null alleles at one or more of the loci. Consequently inbreeding might be substantially overestimated, especially in outbred populations. However, the robustness of the PSA has recently been greatly improved by the development of multilocus methods free of such bias. The PAA, on the other hand, is based on the comparison between offspring and mother genotypes. As a consequence, PAA estimates do not reflect long-term inbreeding history but only recent mating events of the maternal individuals studied ('here and now' selfing). In addition to selfing rates, the PAA allows estimating other mating system parameters, including biparental inbreeding and the correlation of selfing among sibs. Although PAA estimates could also be biased by technical problems, incompatibilities between the mother's genotype and her offspring allow the identification and correction of such bias. For all methods, we provide guidelines on the required number of loci and sample sizes. We conclude that the PSA and PAA are equally robust, provided multilocus information is used. Although experimental constraints may make the PAA more demanding, especially in animals, the two methods provide complementary information, and can fruitfully be conducted together.  相似文献   

3.
Edward Pollak 《Genetics》1987,117(2):353-360
Some stochastic theory is developed for monoecious populations of size N in which there are probabilities beta and 1 - beta of reproduction by selfing and by random mating. It is assumed that beta much greater than N-1. Expressions are derived for the inbreeding coefficient of one random individual and the coefficient of kinship of two random separate individuals at time t. The mean and between-lines variance of the fraction of copies of a locus that are identical in two random separate individuals in an equilibrium population are obtained under the assumption that there is an infinite number of possible alleles. It is found that the theory for random mating populations holds if the effective population number is Ne = N'/(1 + FIS), where FIS is the inbreeding coefficient at equilibrium when N is infinite and N' is the reciprocal of the probability that two gametes contributing to random separate adults come from the same parent. When there is a binomial distribution of successful gametes emanating from each adult, N' = N. An approximation to the probability that an allele A survives if it is originally present in one AA heterozygote is found to be 2(N'/N)(FISS1 + (1 - FIS)S2), where S1 and S2 are the selective advantages of AA and AA in comparison with AA. In the last section it is shown that if there is partial full sib mating and binomial offspring distributions Ne = N/(1 + 3FIS).  相似文献   

4.
Empirical studies of natural populations have commonly reported departures from Hardy-Weinberg expected proportions of heterozygote individuals. Recent advances in statistical population genetics now offer the potential to exploit individual multilocus genotypic information to test more rigorously for possible sources of heterozygote deficiencies. In a previous study in lacustrine brook charr (Salvelinus fontinalis), we reported stronger deficits in small than in large lakes. In the present paper, we propose a methodology for empirically testing alternative hypotheses to identify the cause of the deficits observed in three of the smallest lakes (85, 109 and 182 ha) analysed. First, as in several salmonid species, brook charr may exhibit a trophic polymorphism in north temperate lakes. If morphs are genetically divergent, indiscriminate sampling of both forms would result in less heterozygote individuals than expected in a randomly mating population (Wahlund effect). Using an individual-based method aiming at detecting cryptic population structure, we can reject this explanation as the sole source of deficits for all three lakes. Secondly, mating among relatives could also be frequent in small lakes and lead to heterozygote deficiencies. Significantly more fish than expected at random had low individual multilocus heterozygosity in two of the lakes, suggesting that inbred fish may have been present. Thirdly, sampling of genetically related fish would also lead to departures from Hardy-Weinberg proportions. In the same two lakes, the distribution of pairwise relatedness coefficients departed from its random expectation, suggesting that non-random sampling of kin may have occurred.  相似文献   

5.
Concepts and results on selection balance in multiallelic systems are described. These include a multidimensional concept of heterozygote excess and heterozygote deficiency, a hierarchy of means of assessment of heterozygote advantage, comparisons and contrasts of allelic versus gametic polymorphic states, and conditions defining stable equilibria of complementary gametic sets. The concepts are illustrated in the context of viability selection and behavioral models of kin selection and for two major categories of multilocus selection regimes.  相似文献   

6.
E. Pollak 《Genetics》1988,120(1):303-311
It is assumed that a population has M males in every generation, each of which is permanently mated with c-1 females, and that a proportion beta of matings are between males and their full sisters or half-sisters. Recurrence equations are derived for the inbreeding coefficient of one random individual, coefficients of kinship of random pairs of mates and probabilities of allelic identity when the infinite alleles model holds. If Ft is the inbreeding coefficient at time t and M is large, (1-Ft)/(1-Ft-1)----1-1/(2Ne) as t increases. The effective population number Ne = aM/[1 + (2a-1)FIS], where FIS is the inbreeding coefficient at equilibrium when M is infinite and the constant a depends upon the conditional probabilities of matings between full sibs and the two possible types of half-sibs. When there are M permanent couples, an approximation to the probability that an allele A survives if it is originally present in one AA heterozygote is proportional to FISs1 + (1-FIS)s2, where s1 and s2 are the selective advantages of AA and AA in comparison with AA. The paper concludes with a comparison between the results when there is partial selfing, partial full sib mating (c = 2) and partial sib mating when c is large.  相似文献   

7.
A modified susceptible-infected-recovered (SIR) host-pathogen model is used to determine the influence of plant mating system on the outcome of a host-pathogen interaction. Unlike previous models describing how interactions between mating system and pathogen infection affect individual fitness, this model considers the potential consequences of varying mating systems on the prevalence of resistance alleles and disease within the population. If a single allele for disease resistance is sufficient to confer complete resistance in an individual and if both homozygote and heterozygote resistant individuals have the same mean birth and death rates, then, for any parameter set, the selfing rate does not affect the proportions of resistant, susceptible or infected individuals at equilibrium. If homozygote and heterozygote individual birth rates differ, however, the mating system can make a difference in these proportions. In that case, depending on other parameters, increased selfing can either increase or decrease the rate of infection in the population. Results from this model also predict higher frequencies of resistance alleles in predominantly selfing compared to predominantly outcrossing populations for most model conditions. In populations that have higher selfing rates, the resistance alleles are concentrated in homozygotes, whereas in more outcrossing populations, there are more resistant heterozygotes.  相似文献   

8.
Self-fertilization is a key difference of adaptive significance between species with combined versus separate sexes. In haploid-dominant species such as mosses and ferns, species with either combined or separate sexes (monoicous and dioicous, respectively) have the potential to self-fertilize (intergametophytic selfing), but being monoicous allows an additional mode of selfing (intragametophytic selfing). We used allozyme electrophoresis to estimate deviations from expected levels of heterozygosity under Hardy-Weinberg equilibrium to infer selfing rates in 10 moss species from 36 New Zealand populations. We found that while there were deficiencies of heterozygotes compared to expectation in both monoicous and dioicous mosses, monoicous species had significantly higher levels of heterozygote deficiency than dioicous species (F(IS)=0.89+/-0.12 and 0.41+/-0.11, respectively). Estimated selfing rates suggest that selfing occurs frequently in monoicous populations, and rarely in dioicous populations. However, in two dioicous species (Polytrichadelphus magellanicus and Breutelia pendula), we found significant indications of mixed mating or biparental inbreeding in a handful of populations. These data provide the first analysis of heterozygote deficiency and selfing among haploid-dominant species with breeding system variation, and we discuss our results with respect to the consequences of inbreeding depression and the evolution of breeding systems.  相似文献   

9.
Sherman CD 《Heredity》2008,100(3):296-303
Self-compatible, hermaphroditic marine invertebrates have the potential to self-fertilize in the absence of mates or under sperm-limited conditions, and outcross when sperm is available from a variety of males. Hence, many hermaphroditic marine invertebrates may have evolved mixed-mating systems that involve facultative self-fertilization. Such mixed-mating strategies are well documented for plants but have rarely been investigated in animals. Here, I use allozyme markers to make estimates of selfing from population surveys of reef slope and reef flat sites, and contrast this with direct estimates of selfing from progeny-array analysis, for the brooding coral Seriatopora hystrix. Consistent heterozygote deficits previously reported for S. hystrix suggests that inbreeding (including the extreme of selfing) may be common in this species. I detected significant levels of inbreeding within populations (F(IS)=0.48) and small but significant differentiation among all sites (F(ST)=0.04). I detected no significant differentiation among habitats (F(HT)=0.009) though among site differentiation did occur within the reef slope habitat (F(SH)=0.06), but not within the reef flat habitat (F(SH)=0.015). My direct estimates of outcrossing for six colonies and their progeny from a single reef flat site revealed an intermediate value (t(m) (+/-s.d.)=0.53+/-0.20). Inbreeding coefficients calculated from progeny arrays (F(e)=0.31) were similar to indirect estimates based on adult genotype frequencies for that site (F(IS)=0.38). This study confirms that the mating system of this brooding coral is potentially variable, with both outcrossing and selfing.  相似文献   

10.
Gene flow within and between social groups is contingent on behaviourally mediated patterns of mating and dispersal. To understand how these patterns affect the genetic structure of primate populations, long-term data are required. In this study, we analyse 10 years of demographic and genetic data from a wild lemur population (Propithecus verreauxi verreauxi) at Beza Mahafaly Special Reserve, southwest Madagascar. Our goal is to specify how patterns of mating and dispersal determine kinship and genetic diversity among animals in the population. Specifically, we use microsatellite, parentage, and census data to obtain estimates of genetic subdivision (FST), within group homozygosity (FIS), and relatedness (r) within and among social groups in the population. We analyse different classes of individuals (i.e. adults, offspring, males, females) separately in order to discern which classes most strongly influence aspects of population structure. Microsatellite data reveal that, across years, offspring are consistently more heterozygous than expected within social groups (FIS mean = -0.068) while adults show both positive and negative deviations from expected genotypic frequencies within groups (FIS mean = 0.003). Offspring cohorts are more genetically subdivided than adults (FST mean = 0.108 vs. 0.052) and adult females are more genetically subdivided than adult males (FST mean = 0.098 vs. 0.046). As the proportion of females in social groups increases, the proportion of offspring sired by resident males decreases. Offspring are characterized by a heterozygote excess as resident males (vs. nonresident males) sire the majority of offspring within groups. We link these genetic data to patterns of female philopatry, male dispersal, exogamy, and offspring sex-ratio. Overall, these data reveal how mating and dispersal tactics influence the genetic population structure in this species.  相似文献   

11.
Ritland K 《Heredity》2002,88(4):221-228
Inferences about plant mating systems increasingly use highly informative genetic markers, and investigate finer facets of the mating system. Here, four extensions of models for the estimation mating systems are described. (1) Multiallelic probabilities for the mixed selfing-random mating model are given; these are especially suitable for microsatellites; a generalized Kronecker operator is basis of this formula. (2) Multilocus probabilities for the "correlated-matings model" are given; interestingly, comparisons between single- vs multilocus estimates of correlated-paternity can provide a new measure of population substructure. (3) A measure of biparental inbreeding, the "correlation of selfing among loci", is shown to approximate the fraction of selfing due to uniparental (as opposed to biparental) inbreeding; also joint estimation of 1- 2- and 3-locus selfing rates allow separation, under a simple model, of the frequency vs the magnitude of biparental inbreeding. (4) Method-of-moments estimators for individual outcrossing rates are given. Formulae are given for both gymnosperms and angiosperms, and the computer program "MLTR" implements these methods.  相似文献   

12.
S. K. Jain 《Genetica》1967,38(1):485-503
The population behavior of a gametophytic factor (Ga) which involves gametic selection due to failure ofga pollen onGa Ga orGa ga styles in competition withGa pollen, was investigated by computer simulation. A constant versus randomly varying gametic selection parameter (k) and four different schemes of zygotic selection were introduced in this model for analyzing conditions favorable for the maintenance of locusGa polymorphic in a large, mixed selfing and random mating population. Stable polymorphism was obtained only with rather substantial heterozygote advantage at locusGa whereas the opposing pressures of gametic and zygotic selection yielded fixation of alleleGa orga around a critical value of k instead of a range of k-values allowing nontrivial equilibria. With weak selection and stochastic k, however, very slow rates of change in the genotypic proportions allowed transient polymorphism. In these cases, the rate of outcrossing (t) and the initial frequency ofGa were critical in determining the rate of allelic substitution. Moreover, low values of t allowed the replacement of alleleGa byga even with rather weak zygotic selection. These findings on the balance between gametic and zygotic selection and a markedly frequency-dependent process are briefly discussed in relation to the dynamics of similar factors involving the mating system.  相似文献   

13.
Although reproductive assurance (RA) might play a central role in the evolution of the selfing rate, this hypothesis has never been seriously investigated in an hermaphroditic animal. We studied the mating system of the freshwater snail Physa acuta in which the availability of mating partners might be highly variable, because this species is an efficient colonizer occupying unstable habitats. A total of 11 populations differing in ecological disturbance regime (water level, openness) and snail densities were monitored over 2 years. The outcrossing rate was estimated in ca 10 families per population using microsatellite markers and the progeny-array approach. Components of fecundity and survival were recorded for each progeny. Predominant outcrossing (t(m)=0.94) was detected, with a few individuals (4%) purely selfing. The outcrossing rate did not explain among-family variation in fitness components. None of the predictions formulated under the RA hypothesis were verified: (i) selfing was related neither to disturbed habitats, nor to temporal density fluctuations, (ii) it was positively related to population density, (iii) it co-occurred with multiple paternity, and (iv) it did not induce delayed reproduction. Explanations for these negative results are discussed in light of other arguments supporting the RA hypothesis in P. acuta, as well as alternative theories explaining the occurrence of partial selfing, as either a genetically fixed or plastic trait.  相似文献   

14.
1. Aquatic invertebrates display a wide array of alternative reproductive modes from apomixis to hermaphroditism and cyclical parthenogenesis. These have important effects on genetic diversity and population structure. Populations of the 'living fossil' Triops cancriformis display a range of sex ratios, and various reproductive modes are thought to underlie this variation. Using sex ratio information and histological analyses European populations have been inferred to be gonochoric (with separate males and females), selfing hermaphroditic and androdioecious, a rare reproductive mode in which selfing hermaphrodites coexist with variable proportions of males. In addition, some populations have been described as meiotic parthenogens.
2. Here we use population genetic analysis using microsatellite loci in populations with a range of sex ratios including a gonochoric population, and marker segregation patterns in heterozygote individuals reared in isolation, to clarify the reproductive mode in this species.
3. Our data show that populations in general have very low levels of genetic diversity. Non-gonochoric populations show lower genetic diversity, more heterozygote deficiencies, higher inbreeding coefficients and stronger linkage disequilibria than the gonochoric population. The maintenance of some heterozygosity in populations is consistent with some male influence in T. cancriformis populations, as would be expected from an androdioecious reproductive system. Results of marker segregation in eggs produced in isolation from non-gonochoric populations indicate that meiosis occurs and are consistent with two reproductive modes: selfing hermaphroditism and a type of ameiotic parthenogenesis.
4. Overall, our data indicate that androdioecy and selfing hermaphroditism are the most likely reproductive modes of non-gonochoric European Triops populations. Triops populations are strongly structured, suggesting high genetic drift and low levels of gene flow.  相似文献   

15.
Gao H  Williamson S  Bustamante CD 《Genetics》2007,176(3):1635-1651
Nonrandom mating induces correlations in allelic states within and among loci that can be exploited to understand the genetic structure of natural populations (Wright 1965). For many species, it is of considerable interest to quantify the contribution of two forms of nonrandom mating to patterns of standing genetic variation: inbreeding (mating among relatives) and population substructure (limited dispersal of gametes). Here, we extend the popular Bayesian clustering approach STRUCTURE (Pritchard et al. 2000) for simultaneous inference of inbreeding or selfing rates and population-of-origin classification using multilocus genetic markers. This is accomplished by eliminating the assumption of Hardy-Weinberg equilibrium within clusters and, instead, calculating expected genotype frequencies on the basis of inbreeding or selfing rates. We demonstrate the need for such an extension by showing that selfing leads to spurious signals of population substructure using the standard STRUCTURE algorithm with a bias toward spurious signals of admixture. We gauge the performance of our method using extensive coalescent simulations and demonstrate that our approach can correct for this bias. We also apply our approach to understanding the population structure of the wild relative of domesticated rice, Oryza rufipogon, an important partially selfing grass species. Using a sample of n = 16 individuals sequenced at 111 random loci, we find strong evidence for existence of two subpopulations, which correlates well with geographic location of sampling, and estimate selfing rates for both groups that are consistent with estimates from experimental data (s approximately 0.48-0.70).  相似文献   

16.
Intragametophytic selfing is a mode of reproduction occurring in homosporous ferns where two gametes from the same haploid gametophyte form a completely homozygous sporophyte. The inbreeding equilibrium is derived for a population with partial intragametophytic selfing, selfing, and outcrossing. Procedures for directly estimating the extent of intragametophytic selfing and selfing using parent-offspring data are given. The conditions for a stable polymorphism from a heterozygous-advantage fitness model are more restrictive for partial intragametophytic selfing than for selfing. The rate of decay of gametic disequilibrium is slower for partial intragametophytic selfing than for selfing. Based on these findings, one would predict that plants with intragametophytic selfing would have less polymorphism for loci with a heterozygous advantage and more gametic disequilibrium between neutral loci than is expected for populations with an equivalent amount of selfing. Data from several studies are consistent with these predictions.  相似文献   

17.
The hierarchical mating system among and within fruits of Jatropha curcas was investigated in a base population using five microsatellite loci, employing mixed mating and correlated mating models. Open-pollinated fruits were collected from 15 randomly selected seed trees, sampling seven fruits per tree for a total of 21 seeds from each tree. We detected multilocus genotypes identical to the mother tree in 13 % of offspring, implying the occurrence of apomixis in J. curcas. The presumed apomictic individuals were excluded from the analysis of the remaining results. Evidence of substantial selfing was provided by the average multilocus outcrossing rate (t m?=?0.683), showing that the species exhibits a mixed mating system. The outcrossing rate showed a large variation among seed trees, ranging from 0.21 to 1.0, indicating that the species is not self-incompatible. Significant differences were detected between the multilocus and the single locus outcrossing rates (t m???t s?=?0.347) that suggested mating among related individuals, possibly because of the presence of individuals from the same progeny (sibs) in the base population. The multilocus paternity correlation was extremely high for the population (r p(m)?=?0.999), indicating that the progenies were manly composed of full-sibs. As a consequence of selfing and a high paternity correlation, the co-ancestry coefficient within the progeny was higher (Θ?=?0.369) than expected for panmictic populations. Our results indicated that J. curcas produces seeds asexually by apomixis and sexually by a mixed mating system, combining selfing and outcrossing.  相似文献   

18.
Towards a theory of the evolution of modifier genes   总被引:13,自引:2,他引:11  
The main findings of a study of the evolution of modifier gene frequencies in models of deterministic population genetics are presented. A wide variety of random mating systems are subject to selection with modifiers operating, in different cases, on mutation rates, migration between subpopulations, and linkage between other loci. In all these instances, the modifier frequencies evolve in such a way as to maximize the mean fitness of the population at equilibrium. This is remarkable since, the modifier genes are selectively neutral in the sense that they do not affect the fitness of their individual carriers. In nonrandom mating systems, the mean fitness concept is not well-defined, and there does not appear to be such a simple principle governing the evolution of modifier frequencies. In assortative mating systems, modifiers favoring reduced assortment propensities tend to increase. In contrast, for selfing-outcrossing systems, modifiers favoring increased selfing tend to increase.  相似文献   

19.
Severe environmental change can drive a population extinct unless the population adapts in time to the new conditions (“evolutionary rescue”). How does biparental sexual reproduction influence the chances of population persistence compared to clonal reproduction or selfing? In this article, we set up a one‐locus two‐allele model for adaptation in diploid species, where rescue is contingent on the establishment of the mutant homozygote. Reproduction can occur by random mating, selfing, or clonally. Random mating generates and destroys the rescue mutant; selfing is efficient at generating it but at the same time depletes the heterozygote, which can lead to a low mutant frequency in the standing genetic variation. Due to these (and other) antagonistic effects, we find a nontrivial dependence of population survival on the rate of sex/selfing, which is strongly influenced by the dominance coefficient of the mutation before and after the environmental change. Importantly, since mating with the wild‐type breaks the mutant homozygote up, a slow decay of the wild‐type population size can impede rescue in randomly mating populations.  相似文献   

20.
The section Algarobia of genus Prosopis involves important natural resources in arid and semiarid regions of the world. Their rationale use requires a better knowledge of their biology, genetics and mating system. There are contradictory information about their mating system. Some authors claim they are protogynous and obligate outcrosser. However, some evidence have been shown indicating that they might not be protogynous and that they might be somewhat self-fertile. The current paper analyses genetic structure and mating system parameters in populations of seven species of this section from South and North America based on isozyme data. In all species a significant homozygote excess was found in the offspring population but not in mother plant genotypes. Multilocus and mean single locus outcrossing rates (tm, ts) indicated that about 15% selfing can occur in the studied populations. The heterogeneity between pollen and ovule allele frequencies was low suggesting population structuration, in agreement with the estimates of correlation of tm within progeny (rt) and correlation of outcrossed paternity (rp). The difference of FIS estimates between offspring and mother plants suggest some selection favouring heterozygotes between seedling and adult stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号