首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In the present paper, a hybrid technique involving artificial neural network (ANN) and genetic algorithm (GA) has been proposed for performing modeling and optimization of complex biological systems. In this approach, first an ANN approximates (models) the nonlinear relationship(s) existing between its input and output example data sets. Next, the GA, which is a stochastic optimization technique, searches the input space of the ANN with a view to optimize the ANN output. The efficacy of this formalism has been tested by conducting a case study involving optimization of DNA curvature characterized in terms of the RL value. Using the ANN-GA methodology, a number of sequences possessing high RL values have been obtained and analyzed to verify the existence of features known to be responsible for the occurrence of curvature. A couple of sequences have also been tested experimentally. The experimental results validate qualitatively and also near-quantitatively, the solutions obtained using the hybrid formalism. The ANN-GA technique is a useful tool to obtain, ahead of experimentation, sequences that yield high RL values. The methodology is a general one and can be suitably employed for optimizing any other biological feature.  相似文献   

2.
This paper entails a comprehensive study on production of a biosurfactant from Rhodococcus erythropolis MTCC 2794. Two optimization techniques—(1) artificial neural network (ANN) coupled with genetic algorithm (GA) and (2) response surface methodology (RSM)—were used for media optimization in order to enhance the biosurfactant yield by Rhodococcus erythropolis MTCC 2794. ANN and RSM models were developed, incorporating the quantity of four medium components (sucrose, yeast extract, meat peptone, and toluene) as independent input variables and biosurfactant yield [calculated in terms of percent emulsification index (% EI24)] as output variable. ANN-GA and RSM were compared for their predictive and generalization ability using a separate data set of 16 experiments, for which the average quadratic errors were ~3 and ~6%, respectively. ANN-GA was found to be more accurate and consistent in predicting optimized conditions and maximum yield than RSM. For the ANN-GA model, the values of correlation coefficient and average quadratic error were ~0.99 and ~3%, respectively. It was also shown that ANN-based models could be used accurately for sensitivity analysis. ANN-GA-optimized media gave about a 3.5-fold enhancement in biosurfactant yield.  相似文献   

3.
Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.  相似文献   

4.
Using a fermentation database for Escherichia coli producing green fluorescent protein (GFP), we have implemented a novel three-step optimization method to identify the process input variables most important in modeling the fermentation, as well as the values of those critical input variables that result in an increase in the desired output. In the first step of this algorithm, we use either decision-tree analysis (DTA) or information theoretic subset selection (ITSS) as a database mining technique to identify which process input variables best classify each of the process outputs (maximum cell concentration, maximum product concentration, and productivity) monitored in the experimental fermentations. The second step of the optimization method is to train an artificial neural network (ANN) model of the process input-output data, using the critical inputs identified in the first step. Finally, a hybrid genetic algorithm (hybrid GA), which includes both gradient and stochastic search methods, is used to identify the maximum output modeled by the ANN and the values of the input conditions that result in that maximum. The results of the database mining techniques are compared, both in terms of the inputs selected and the subsequent ANN performance. For the E. coli process used in this study, we identified 6 inputs from the original 13 that resulted in an ANN that best modeled the GFP fluorescence outputs of an independent test set. Values of the six inputs that resulted in a modeled maximum fluorescence were identified by applying a hybrid GA to the ANN model developed. When these conditions were tested in laboratory fermentors, an actual maximum fluorescence of 2.16E6 AU was obtained. The previous high value of fluorescence that was observed was 1.51E6 AU. Thus, this input condition set that was suggested by implementing the proposed optimization scheme on the available historical database increased the maximum fluorescence by 55%.  相似文献   

5.
基于人工神经网络-遗传算法的樟芝发酵培养基优化   总被引:1,自引:0,他引:1  
采用优化模型对药用丝状真菌樟芝的复杂发酵过程进行建模,并获得最优发酵培养基组成.对樟芝发酵过程中的形态变化过程进行了观察,并分别采用人工神经网络(ANN)和响应面法(RSM)对樟芝发酵过程进行建模,同时采用遗传算法(GA)优化了发酵培养基组成.结果表明,ANN模型比RSM模型具有更好的实验数据拟合能力和预测能力,GA计算得到樟芝生物量理论最大值为6.2 g/L,并获得发酵最佳接种量及培养基组成:孢子浓度1.76× 105个/mL,葡萄糖29.1 g/L,蛋白胨9.4 g/L,黄豆粉2.8 g/L.在最佳培养条件下,樟芝生物量为(6.1±0.2)g/L.基于ANN-GA的优化方法可用于优化其他丝状真菌的复杂发酵过程,从而获得生物量或活性代谢产物.  相似文献   

6.
Fractional factorial design (FFD) was applied to evaluate the effects of various process parameters in influencing the extraction efficiency of pepsin soluble collagen (PSC) from muscles of cultured catfish (Clarias gariepinus×C. macrocephalus). Result of the first order factorial design showed that acetic acid concentration, acid extraction time, acetic acid to muscles ratio, and stirring speed posed significant effect (P<0.05) on the yield of PSC obtained at the end of the extraction process. Two different artificial intelligence techniques namely artificial neural network (ANN) and genetic algorithm (GA) were then integrated for optimizing the extraction conditions to obtain the highest yield of PSC. The ANN was trained using the back propagation algorithm. A model was successfully generated with R 2 value of 0.9527 and MSE value of 0.1672 for unseen data set, implying a good generalization of the network. Input parameters of the established ANN model were subsequently optimized using GA. The hybrid of ANN-GA model predicted a maximum extraction yield of PSC at 238.25 mg/g under the following conditions: an acetic acid concentration of 0.70 M, the acetic acid to muscles ratio of 25.78 mL/g, and the stirring speed of 432.50 rpm. Verification of the optimization showed the percentage error differences between the experimental and predicted values were less than 5%, indicating excellent modeling, predicting ability and optimization by the ANN-GA model.  相似文献   

7.
Two different artificial intelligence techniques namely artificial neural network (ANN) and genetic algorithm (GA) were integrated for optimizing fermentation medium for the production of glucansucrase. The experimental data reported in a previous study were used to build the neural network. The ANN was trained using the back propagation algorithm. The ANN predicted values showed good agreement with the experimentally reported ones from a response surface based experiment. The concentrations of three medium components: viz Tween 80, sucrose and K(2)HPO(4) served as inputs to the neural network model and the enzyme activity as the output of the model. A model was generated with a coefficient of correlation (R(2)) of 1.0 for the training set and 0.90 for the test data. A genetic algorithm was used to optimize the input space of the neural network model to find the optimum settings for maximum enzyme activity. This artificial neural network supported genetic algorithm predicted a maximum glucansucrase activity of 6.92U/ml at medium composition of 0.54% (v/v) Tween 80, 5.98% (w/v) sucrose and 1.01% (w/v) K(2)HPO(4). ANN-GA predicted model gave a 6.0% increase of enzyme activity over the regression based prediction for optimized enzyme activity. The maximum enzyme activity experimentally obtained using the ANN-GA designed medium was 6.75+/-0.09U/ml which was in good agreement with the predicted value.  相似文献   

8.
Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be 95 microgram/ml, which nearly doubled (176 microgram/ml) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production (197 microgram/ml) was obtained by cultivating the cells with (g/l) fructose 2.7602, MgSO4 1.2369, (NH4)2PO4 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.  相似文献   

9.
In this study, a hybridized neuro-genetic optimization methodology realized by embedding finite element analysis (FEA) trained artificial neural networks (ANN) into genetic algorithms (GA), is used to optimize temperature control in a ceramic based continuous flow polymerase chain reaction (CPCR) device. The CPCR device requires three thermally isolated reaction zones of 94 degrees C, 65 degrees C, and 72 degrees C for the denaturing, annealing, and extension processes, respectively, to complete a cycle of polymerase chain reaction. The most important aspect of temperature control in the CPCR is to maintain temperature distribution at each reaction zone with a precision of +/-1 degree C or better, irrespective of changing ambient conditions. Results obtained from the FEA simulation shows good comparison with published experimental work for the temperature control in each reaction zone of the microfluidic channels. The simulation data are then used to train the ANN to predict the temperature distribution of the microfluidic channel for various heater input power and fluid flow rate. Once trained, the ANN analysis is able to predict the temperature distribution in the microchannel in less than 20 min, whereas the FEA simulation takes approximately 7 h to do so. The final optimization of temperature control in the CPCR device is achieved by embedding the trained ANN results as a fitness function into GA. Finally, the GA optimized results are used to build a new FEA model for numerical simulation analysis. The simulation results for the neuro-genetic optimized CPCR model and the initial CPCR model are then compared. The neuro-genetic optimized model shows a significant improvement from the initial model, establishing the optimization method's superiority.  相似文献   

10.
This article presents two hybrid strategies for the modeling and optimization of the glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel artificial intelligence formalism, namely, genetic programming (GP), is used to develop a process model solely from the historic process input-output data. In the next step, the input space of the GP-based model, representing process operating conditions, is optimized using two stochastic optimization (SO) formalisms, viz., genetic algorithms (GAs) and simultaneous perturbation stochastic approximation (SPSA). These SO formalisms possess certain unique advantages over the commonly used gradient-based optimization techniques. The principal advantage of the GP-GA and GP-SPSA hybrid techniques is that process modeling and optimization can be performed exclusively from the process input-output data without invoking the detailed knowledge of the process phenomenology. The GP-GA and GP-SPSA techniques have been employed for modeling and optimization of the glucose to gluconic acid bioprocess, and the optimized process operating conditions obtained thereby have been compared with those obtained using two other hybrid modeling-optimization paradigms integrating artificial neural networks (ANNs) and GA/SPSA formalisms. Finally, the overall optimized operating conditions given by the GP-GA method, when verified experimentally resulted in a significant improvement in the gluconic acid yield. The hybrid strategies presented here are generic in nature and can be employed for modeling and optimization of a wide variety of batch and continuous bioprocesses.  相似文献   

11.
The effects of agitation and aeration rates on copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] production by Azohydromonas lata MTCC 2311 using cane molasses supplemented with propionic acid in a bioreactor were investigated. The experiments were conducted in a three-level factorial design by varying the impeller (150-500 rev min(-1)) and aeration (0.5-1.5 vvm) rates. Further, the data were fitted to mathematical models [quadratic polynomial equation and artificial neural network (ANN)] and process variables were optimized by genetic algorithm-coupled models. ANN and hybrid ANN-GA were found superior for modeling and optimization of process variables, respectively. The maximum copolymer concentration of 7.45 g l(-1) with 21.50 mol% of 3HV was predicted at process variables: agitation speed, 287 rev min(-1); and aeration rate, 0.85 vvm, which upon validation gave 7.20 g l(-1) of P(3HB-co-3HV) with 21 mol% of 3HV with the prediction error (%) of 3.38 and 2.32, respectively. Agitation speed established a relative high importance of 72.19% than of aeration rate (27.80%) for copolymer accumulation. The volumetric gas-liquid mass transfer coefficient (k (L) a) was strongly affected by agitation and aeration rates. The highest P(3HB-co-3HV) productivity of 0.163 g l(-1) h(-1) was achieved at 0.17 s(-1) of k (L) a value. During the early phase of copolymer production process, 3HB monomers were accumulated, which were shifted to 3HV units (9-21%) during the cultivation period of 24-42 h. The enhancement of 7.5 and 34% were reported for P(3HB-co-3HV) production and 3HV content, respectively, by hybrid ANN-GA paradigm, which revealed the significant utilization of cane molasses for improved copolymer production.  相似文献   

12.
Rapamycin is a high-value product finding immense use as a drug, in organ transplantation, and as a potential immunosuppressant. Optimization of fermentation parameters of rapamycin production by Streptomyces hygroscopicus NRRL 5491 has been carried out. The low titer value of rapamycin in the original producer strain limits its applicability at industrial level. This study aims at improving the production of rapamycin by optimizing the nutrient requirements. Addition of l-lysine increased the production of rapamycin up to a significant level which supports the fact that it acts as precursor for rapamycin production, as found in previous studies. Effect of optimized medium on the Streptomyces growth rate as well as rapamycin production has been studied. The optimization study incorporates one at a time parameter optimization studies followed by tool-based hybrid methodology. This methodology includes the Plackett–Burman design (PBD) method, artificial neural networks (ANN), and genetic algorithms (GA). PBD screened mannose, soyabean meal, and l-lysine concentrations as significant factors for rapamycin production. ANN was used to construct rapamycin production model. This strategy has led to a significant increase of rapamycin production up to 320.89 mg/L at GA optimized concentrations of 25.47, 15.39, and 17.48 g/L for mannose, soyabean meal, and l-lysine, respectively. The present study must find its application in scale-up study for industrial level production of rapamycin.  相似文献   

13.
This study aims at optimizing the culture conditions (agitation speed, temperature and pH) of the Pleuromutilin production by Pleurotus mutilus. A hybrid methodology including a central composite design (CCD), an artificial neural network (ANN), and a particle swarm optimization algorithm (PSO) was used. Specifically, the CCD and ANN were used for conducting experiments and modeling the non-linear process, respectively. The PSO was used for two purposes: Replacing the standard back propagation in training the ANN (PSONN) and optimizing the process. In comparison to the response surface methodology (RSM) and to the Bayesian regularization neural network (BRNN), PSONN model has shown the highest modeling ability. Under this hybrid approach (PSONN-PSO), the optimum levels of culture conditions were: 242 rpm agitation speed; temperature 26.88 and pH 6.06. A production of 10,074 ± 500 ??g/g, which was in very good agreement with the prediction (10,149 ??g/g), was observed in verification experiment. The hybrid PSONN-PSO gave a yield of 27.5% greater than that obtained by the hybrid BRNN-PSO. This work shows that the combination of PSONN with the generic PSO algorithm has a good predictability and a good accuracy for bio-process optimization. This hybrid approach is sufficiently general and thus can be helpful for modeling and optimization of other industrial bio-processes.  相似文献   

14.
We have previously shown the usefulness of historical data for fermentation process optimization. The methodology developed includes identification of important process inputs, training of an artificial neural network (ANN) process model, and ultimately use of the ANN model with a genetic algorithm to find the optimal values of each critical process input. However, this approach ignores the time-dependent nature of the system, and therefore, does not fully utilize the available information within a database. In this work, we propose a method for incorporating time-dependent optimization into our previously developed three-step optimization routine. This is achieved by an additional step that uses a fermentation model (consisting of coupled ordinary differential equations (ODE)) to interpret important time-course features of the collected data through adjustments in model parameters. Important process variables not explicitly included in the model were then identified for each model parameter using automatic relevance determination (ARD) with Gaussian process (GP) models. The developed GP models were then combined with the fermentation model to form a hybrid neural network model that predicted the time-course activity of the cell and protein concentrations of novel fermentation conditions. A hybrid-genetic algorithm was then used in conjunction with the hybrid model to suggest optimal time-dependent control strategies. The presented method was implemented upon an E. coli fermentation database generated in our laboratory. Optimization of two different criteria (final protein yield and a simplified economic criteria) was attempted. While the overall protein yield was not increased using this methodology, we were successful in increasing a simplified economic criterion by 15% compared to what had been previously observed. These process conditions included using 35% less arabinose (the inducer) and 33% less typtone in the media and reducing the time required to reach the maximum protein concentration by 10% while producing approximately the same level of protein as the previous optimum.  相似文献   

15.
16.
To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory (LSTM), with diverse input datasets, and compares their performance. The Blast_Weather_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.  相似文献   

17.
A novel hybrid genetic algorithm (GA)/radial basis function neural network (RBFNN) technique, which selects features from the protein sequences and trains the RBF neural network simultaneously, is proposed in this paper. Experimental results show that the proposed hybrid GA/RBFNN system outperforms the BLAST and the HMMer.  相似文献   

18.
Linear regression (LR) has been used to predict the amino acid (AA) profiles of feed ingredients, given proximate analysis (PA) input. Artificial neural networks (ANN) have also been trained to predict AA levels, generally with better results. Past projects have indicated that ANN more effectively identified the complex relationship between nutrients and feed ingredients than did LR. It was shown that the maximum R2 value, a measurement of the amount of variability explained by the model, was highest when a general regression neural network (GRNN) with iterative calibration (GRNNIT) was used to train the ANN. This was in comparison to LR, Ward backpropagation (WBP) or 3-layer backpropagation (3BP) architectures. The current study investigated the potential of a new, advanced method of calibration using the genetic algorithm (GA) to optimize GRNN smoothing values. Calibration of an ANN allows the neural network to generalize well and therefore provide good results on new data. A GRNN architecture (NeuroShell 2® Software) with GA calibration (GRNNGA) was used to train an ANN to predict AA levels in maize, soya bean meal (SBM), meat and bone meal, fish meal and wheat, based on proximate analysis input. Within the GRNNGA architecture, ANN were trained with either an Euclidean or City Block distance metric and a (0,1), (−1,1), (logistic) or (tanh) input scale. Predictive performance was judged on the basis of the maximum R2 value. In general, maximum R2 values were higher when the GA calibration was used in comparison to LR. For example, the highest methionine (MET) R2 value for SBM was 0.54 (LR), 0.81 (3BP), 0.87 (WBP), 0.92 (GRNNIT) and 0.98 (GRNNGA). Genetic algorithm calibration of GRNN architecture led to further improvements in ANN performance for AA level predictions in most of the cases studied. Exceptions were the TSAA level in SBM (0.94 with GRNNIT vs. 0.90 with GRNNGA) and the TRY level in maize (0.88 with GRNNIT vs. 0.61 with GRNNGA).  相似文献   

19.
The classification methodology based on morphometric data and supervised artificial neural networks (ANN) was tested on five fly species of the parasitoid genera Tachina and Ectophasia (Diptera, Tachinidae). Objects were initially photographed, then digitalized; consequently the picture was scaled and measured by means of an image analyser. The 16 variables used for classification included length of different wing veins or their parts and width of antennal segments. The sex was found to have some influence on the data and was included in the study as another input variable. Better and reliable classification was obtained when data from both the right and left wings were entered, the data from one wing were however found to be sufficient. The prediction success (correct identification of unknown test samples) varied from 88 to 100% throughout the study depending especially on the number of specimens in the training set. Classification of the studied Diptera species using ANN is possible assuming a sufficiently high number (tens) of specimens of each species is available for the ANN training. The methodology proposed is quite general and can be applied for all biological objects where it is possible to define adequate diagnostic characters and create the appropriate database.  相似文献   

20.
Abstract

The microbial polysaccharides secreted and produced from various microbes into their extracellular environment is known as exopolysaccharide. These polysaccharides can be secreted from the microbes either in a soluble or insoluble form.Lactobacillus sp. is one of the organisms that have been found to produce exopolysaccharide. Exo-polysaccharides (EPS) have various applications such as drug delivery, antimicrobial activity, surgical implants and many more in different fields. Medium composition is one of the major aspects for the production of EPS from Lactobacillus sp., optimization of medium components can help to enhance the synthesis of EPS . In the present work, the production of exopolysaccharide with different medium composition was optimized by response surface methodology (RSM) followed by tested for fitting with artificial neural networks (ANN). Three algorithms of ANN were compared to investigate the highest yeild of EPS. The highest yeild of EPS production in RSM was achieved by the medium composition that consists of (g/L) dextrose 15, sodium dihydrogen phosphate 3, potassium dihydrogen phosphate 2.5, triammonium citrate 1.5, and, magnesium sulfate 0.25. The output of 32 sets of RSM experiments were tested for fitting with ANN with three algorithms viz. Levenberg–Marquardt Algorithm (LMA), Bayesian Regularization Algorithm (BRA) and Scaled Conjugate Gradient Algorithm (SCGA) among them LMA found to have best fit with the experiments as compared to the SCGA and BRA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号