首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Differential scanning calorimetry (DSC), fluorescence polarization and X-ray diffraction were per-formed to investigate the kinetics of the micellar to the lamellar phase transition of dipalmitoylphosphatidylcholine/1-palmitoylphosphatidylcholine (16:0 LPC/DPPC) liposomes at gel phase. With a 16:0 LPC concentration up to 27 mol% only the sharp main transition with relatively high enthalpy (△H) values of DPPC was observed. Increasing 16 : 0 LPC concentration, the phase transition was broadened and the transition enthalpy was decreased and finally totally disappeared. The fluorescence probes of 3AS, 9AS, 12AS, and 16AP were employed, respectively, to detect the mo-bility of various sites of carbon chains of DPPC or 16:0 LPC/DPPC liposomes. It was shown that DPPC liposomes formed in the absence of 16:0 LPC always had a fluidity gradient in both gel and liquid-crystalline phase, while in the presence of 14.1 mol% and 27.0 mol% 16:0 LPC in the mixtures, the fluidity gradient tended to disappear below 40℃:  相似文献   

2.
Mixtures of 1,2-dipalmitoyl- and 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC and DHPC) in dispersion with excess water were studied by differential scanning calorimetry (DSC) and X-ray diffraction techniques. The transition parameters of the main gel-to-liquid crystalline transition show a monotonous dependence on the composition, indicating ideal miscibility of the two lipids, in keeping with the closely similar structures of the pure, hydrated lipids in the P beta' and L alpha states. The pre-transition shows a depression to a minimum temperature of 23 degrees C occurring around equimolar mixtures. Below the pre-transition temperatures, the L beta' gel phase of DPPC maintains bimolecular structure up to DHPC admixtures of 50 mol%, with adaptations in hydrocarbon chain packing and multilayer periodicity. On the side of DHPC, the interdigitated gel structure shows full solubility for DPPC up to equimolarity without major structural changes. The crystalline Lc-phase of DPPC exhibits immiscibility with DHPC, demonstrated by the fact that the subtransition is abolished already at less than 15 mol% DHPC. DHPC, below its subtransition, can accommodate up to 50 mol% DPPC within an interdigitated layer structure with unperturbed, crystalline hydrocarbon chain packing.  相似文献   

3.
Unlike the parent phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the monofluorinated analog, 1-palmitoyl-2-(16-fluoropalmitoyl)sn-glycero-3-phosphocholine (F-DPPC), spontaneously forms an interdigitated gel phase (L(β)I) below the main transition temperature (T(m)). We have examined the effects of introducing cholesterol to F-DPPC and 1:1 F-DPPC/DPPC membranes using a combination of DSC, optical density, fluorescence intensity and polarization, (31)P NMR, and X-ray diffraction techniques. Cholesterol increases the fluidity of the gel phase, broadens the main transition, and decreases the main transition enthalpy. However, these results also reveal that there is an unusually large degree of phase coexistence between the L(β)I and non-interdigitated gel phases when cholesterol is added. Cholesterol encourages this phase segregation by partitioning into the thicker non-interdigitated domains. At higher cholesterol concentrations, the majority or all of the L(β)I phase of F-DPPC and 1:1 F-DPPC/DPPC is eliminated and is replaced by a non-interdigitated liquid-ordered (l(o)) phase with properties similar to DPPC/cholesterol. Consequently, cholesterol mitigates the influence the CF moiety has on the thermodynamic phase behavior of F-DPPC. Our findings demonstrate that there are multiple characteristics of cholesterol-rich membranes that disfavor interdigitation.  相似文献   

4.
We investigated the behavior of a membrane protein, Ca(2+)-ATPase, in interdigitated phospholipid bilayers. The results showed that Ca(2+)-ATPase does not cause significant alterations in the interdigitation of 16:0 LPC/DPPC (27.0 mol% LPC) vesicles when it is reconstituted with lipids. Intrinsic fluorescence, acrylodan fluorescent adducts, and CD spectra indicated that Ca(2+)-ATPase, when embedded in interdigitated bilayer structures, is more exposed to the hydrophilic environment and has a looser structure than when embedded in non-interdigitated bilayers. The interdigitation of acyl chains induces a rapid loss of enzyme activity. It is suggested that interdigitated bilayer structures may play an important role as negative regulatory factors in physiological functions.  相似文献   

5.
Dihexadecylphosphatidylcholine (DHPC)/cholesterol binary mixtures in excess of water have been characterized by small-angle X-ray diffraction and differential scanning calorimetry and a temperature-composition phase diagram for this binary has been constructed. The property of cholesterol to perturb the hydrocarbon chain interdigitation in the lamellar gel phase of DHPC and to convert it into a non-interdigitated state has been observed by small- angle X-ray diffraction at cholesterol concentrations as low as 0.1 mol%. The interdigitated and non-interdigitated lamellar gel phases coexist in the range up to 5 mol% cholesterol. At this and higher cholesterol concentrations only non-interdigitated phases have been found in the phase diagram of the mixture. It is suggested that the ability of cholesterol in low concentration to eliminate the hydrocarbon chain interdigitation is related to the free energy increase due to unfavourable line boundaries between the interdigitated and non-interdigitated lipid domains.  相似文献   

6.
P Nambi  E S Rowe  T J McIntosh 《Biochemistry》1988,27(26):9175-9182
It is now well established that a number of amphiphilic molecules such as ethanol can induce the formation of the fully interdigitated gel phase in phosphatidylcholines. We have shown earlier that alcohols such as ethanol induce biphasic melting behavior in phosphatidylcholines [Rowe, E. S. (1983) Biochemistry 22, 3299-3305] but not in phosphatidylethanolamines [Rowe, E. S. (1985) Biochim. Biophys. Acta 813, 321-330]. Simon and McIntosh [(1984) Biochim. Biophys. Acta 773, 169-172] showed that the alcohol-induced biphasic melting behavior in phosphatidylcholines is a consequence of acyl chain interdigitation. In the present study we demonstrate the detection of the transition of DPPC and DSPC to the interdigitated phase in the presence of ethanol using the fluorescence properties of the commonly used fluorophore 1,6-diphenyl-1,3,5-hexatriene (DPH). By correlating fluorescence and X-ray diffraction results, we have demonstrated the use of fluorescence to study the phase transition from the noninterdigitated to the interdigitated phase. Using this method, we have investigated the temperature and ethanol concentration dependence of the induction of the interdigitated phase in DSPC and DPPC and shown that the induction of interdigitation by ethanol is temperature dependent, with higher temperature favoring interdigitation. The temperature-ethanol phase diagrams have been determined for DPPC and DSPC.  相似文献   

7.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

8.
Giant vesicles formed of 1,2-dipalmitoylphosphatidylcholine (DPPC) and sterols (cholesterol or ergosterol) in water and water/ethanol solutions have been used to examine the effect of sterol composition and ethanol concentration on the area compressibility modulus (K(a)), overall mechanical behavior, vesicle morphology, and induction of lipid alkyl chain interdigitation. Our results from micropipette aspiration suggest that cholesterol and ergosterol impact the order and microstructure of the gel (L(beta)') phase DPPC membrane. At low concentration (10-15 mol%) these sterols disrupt the long-range lateral order and fluidize the membrane (K(a) approximately 300 mN/m). Then at 18 mol%, these sterols participate in the formation of a continuous cohesive liquid-ordered (L(o)) phase with a sterol-dependent membrane density (K(a) approximately 750 for DPPC/ergosterol and K(a) approximately 1100 mN/m for DPPC/cholesterol). Finally at approximately 40 mol% both cholesterol and ergosterol impart similar condensation to the membrane (K(a) approximately 1200 mN/m). Introduction of ethanol (5-25 vol%) results in drops in the magnitude of K(a), which can be substantial, and sometimes individual vesicles with lowered K(a) reveal two slopes of tension versus apparent area strain. We postulate that this behavior represents disruption of lipid-sterol intermolecular interactions and therefore the membrane becomes interdigitation prone. We find that for DPPC vesicles with sterol concentrations of 20-25 mol%, significantly more ethanol is required to induce interdigitation compared to pure DPPC vesicles; approximately 7 vol% more for ergosterol and approximately 10 vol% more for cholesterol. For lower sterol concentrations (10-15 mol%), interdigitation is offset, but by <5 vol%. These data support the idea that ergosterol and cholesterol do enhance survivability for cells exposed to high concentrations of ethanol and provide evidence that the appearance of the interdigitated (L(beta)I) phase bilayer is a major factor in the disruption of cellular activity, which typically occurs between approximately 12 and approximately 16 vol% ethanol in yeast fermentations. We summarize our findings by producing, for the first time, "elasticity/phase diagrams" over a wide range of sterol (cholesterol and ergosterol) and ethanol concentrations.  相似文献   

9.
X Peng  J Jonas 《Biochemistry》1992,31(28):6383-6390
High-pressure 31P NMR was used for the first time to investigate the effects of pressure on the structure and dynamics of the phosphocholine headgroup in pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar aqueous dispersions and in DPPC bilayers containing the positively charged form of the local anesthetic tetracaine (TTC). The 31P chemical shift anisotropies, delta sigma, and the 31P spin-lattice relaxation times, T1, were measured as a function of pressure from 1 bar to 5 kbar at 50 degrees C for both pure DPPC and DPPC/TTC bilayers. This pressure range permitted us to explore the rich phase behavior of DPPC from the liquid-crystalline (LC) phase through various gel phases such as gel I (P beta'), gel II (L beta'), gel III, gel IV, gel X, and the interdigitated, Gi, gel phase. For pure DPPC bilayers, pressure had an ordering effect on the phospholipid headgroup within the same phase and induced an interdigitated Gi gel phase which was formed between the gel I (P beta') and gel II (L beta') phases. The 31P spin-lattice relaxation time measurements showed that the main phase transition (LC to gel I) was accompanied by the transition between the fast and slow correlation time regimes. Axially symmetric 31P NMR lineshapes were observed at pressures up to approximately 3 kbar but changed to characteristic axially asymmetric rigid lattice lineshapes at higher pressures (3.1-5.1 kbar).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Differential scanning calorimetry is a useful method to study the thermotropic phase transitions of a phospholipid bilayer. In the present study DSC is used to determine the effects of methanol and ethanol on DPPC and DPPC/2 mol% cholesterol bilayers. The biphasic effect of the main transition and the presence of an extra peak on the DSC cooling scans were observed above certain alcohol concentrations. In the presence of 2% cholesterol, the concentration at which the biphasic effect occurs is increased by both short-chain alcohols. 1,6-Diphenyl-1,3,5-hexatriene (DPH) is used as a fluorescent probe to directly determine the onset of interdigitation in these systems as reflected by a drop in the DPH fluorescence intensity.  相似文献   

11.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6599-6603
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.  相似文献   

12.
H Komatsu  E S Rowe 《Biochemistry》1991,30(9):2463-2470
It is now recognized that many amphiphilic molecules such as ethanol can induce the formation of the fully interdigitated gel phase (L beta I) in phosphatidylcholines (PC's). In the present study, we have developed a simple detection method for the L beta I phase using pyrene-labeled PC (PyrPC), which is a PC analogue with covalently coupled pyrene moiety at the end of one of its acyl chains. The intensity ratio of its fluorescence vibrational bands is a reflection of the polarity of the environment of the fluorophore. We have tested this fluorophore in several established interdigitated lipid systems, including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (1,2-DPPC) in the presence of high concentrations of ethanol and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (DHPC) and 1,3-dipalmitoyl-sn-glycero-2-phosphocholine (1,3-DPPC) in the absence of any additives. We have found in each of these systems that the ratio of the intensities of band III (387.5 nm) to band I (376.5 nm) is sensitive to the lipid phase change from the noninterdigitated L beta' phase to the interdigitated L beta I phase. By comparison of the III/I ratios for PyrPC in the lipid systems with the III/I ratios for methylpyrene in organic solvents, it was shown that the polarity of the PyrPC environment in the L beta I phase is similar to that of pentanol or ethanol. Using this method, we investigated the effect of cholesterol on the ethanol induction of the interdigitated gel phase in 1,2-DPPC. We found that the ethanol induction of the interdigitated gel phase is prevented by the presence of 20 mol % cholesterol.  相似文献   

13.
The effect of 2,4-dichlorophenol (DCP) on the structures and phase transitions of fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes was studied using FT-Raman spectroscopy. Whereas the Raman frequency shifts of the most frequently investigated bands of C-C and C-H stretching regions only indicate the main phase transition (P(beta')-L(alpha)) of the pure DPPC/water system, the Raman shift of C-H scissoring vibration at 1440 cm(-1) was found to be able to reveal the pretransition (L(beta')-P(beta')) as well. Analyzing the spectral parameters of the trans band at 1128 cm(-1), which does not overlap with DCP vibrational modes, a continuous decrease of trans conformations was found with increasing DCP concentration at 26 degrees C accompanying the phase transitions L(beta')-P(beta') and P(beta')-L(alpha). The intensity ratio of the symmetrical and asymmetrical methylene stretching bands (at 2850 cm(-1) and 2880 cm(-1)), defined as the disorder parameter by Levin [Levin, I.W., 1985. Two types of hydrocarbon chain interdigitation in sphingomielin bilayers. Biochemistry 24, 6282-6286], indicated that in the interdigitated phase (L(I)) the order is markedly high and comparable with that of L(beta). Both the phase transition P(beta')-L(alpha) in the DCP/DPPC molar ratio range of 10/100-50/100 and the phase transition L(I)-L(alpha) led to a significant increase of disordered chains and the presence of DCP molecules induced a more disordered chain region than that observed in the L(alpha) phase of DPPC. Nevertheless, it was found that the L(alpha) phase with DCP contains approximately the same amount of trans conformers than that without DCP.  相似文献   

14.
While hydrated dipalmitoyl phosphatidylcholine (DPPC) forms tilted chain L beta' bilayers in the gel phase, the ether-linked analogue dihexadecyl phosphatidylcholine (DHPC) exhibits gel phase polymorphism. At low hydration DHPC forms L beta' phases but at greater than 30% H2O a chain-interdigitated gel phase is observed (Ruocco, M. J., D. S. Siminovitch, and R. G. Griffin. 1985. Biochemistry. 24:2406-2411; Kim, J.T., J. Mattai, and G.G. Shipley. 1987. Biochemistry. 26:6599-6603). In this study we report the behavior of a phosphatidylcholine (PC) with both types of chain linkage, 1-hexadecyl-2-palmitoyl-sn-glycero-3-phosphocholine (HPPC). HPPC has been investigated as a function of hydration using differential scanning calorimetry (DSC) and x-ray diffraction. By DSC, over the hydration range 5. 1-70.3 wt% H2O, HPPC exhibits two reversible transitions. The reversible main chain-melting transition decreases from 69 degrees C, reaching a limiting value of 40 degrees C at full hydration. X-ray diffraction patterns of hydrated HPPC have been recorded as a function of hydration at 20 degrees and 50 degrees C. At 50 degrees C, melted-chain L alpha bilayer phases are observed at all hydrations. At 20 degrees C, at low hydrations (less than 34 wt% H2O) HPPC exhibits diffraction patterns characteristic of bilayer gel phases similar to those of the gel phase of DPPC. In contrast, at greater than or equal to 34 wt% H2O, HPPC shows a much reduced bilayer periodicity, d = 47 A, and a single sharp reflection at 4.0 A in the wide angle region. This diffraction pattern is identical to that exhibited by the interdigitated phase of DHPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have systematically investigated the effect of short chain alcohols (methanol to n-propanol) on the phase transitions of 1,2-dihexadecylphosphatidylcholine (DHPC), a lipid that forms a stable interdigitated gel phase (L beta I) in aqueous solution. The temperature of the low-temperature L beta I to P beta' phase transition of DHPC was found to increase with alcohol concentration, showing that alcohol interacts preferentially with the interdigitated phase relative to the non-interdigitated gel. The main transition of DHPC exhibited a biphasic effect of alcohol concentration similar to that previously observed with DPPC (Rowe, E.S. (1983) Biochemistry 22,3299-3305). As alcohol concentration is increased the lower L beta I to P beta' and main P beta' to L alpha transitions of DHPC merge at the threshold concentration of the biphasic effect, so that above this concentration there is one phase transition from L beta I directly to L alpha. This is analogous to DPPC above its biphasic threshold. Similar to DPPC, the transition between L beta I and L alpha exhibits marked hysteresis.  相似文献   

16.
Fluorescence polarization studies of 1,6-diphenyl-1,3,5-hexatriene (DPH) have been compared with the excimer/monomer fluorescence intensity ratio (I'/I) of 1,3-di(2-pyrenyl)propane, (2Py(3)2Py). This ratio permits evaluation of changes in fluidity of the outer regions of the bilayer, where 2Py(3)2Py preferentially distributes. On the other hand, fluorescence polarization of DPH reports the structural order of the bilayer core. In the fluid phase of DMPC bilayers, for lindane concentrations higher than 25 microM, the excimer/monomer fluorescence intensity ratio (I'/I) decreases, thus reflecting an order increase of the probe environment. However, in the same conditions, the fluorescence polarization of DPH is almost insensitive to any perturbation. Identical results have been obtained in other pure lipid bilayers, namely DPPC and DSPC. However, both probes detect disordering effects of lindane in the gel phase of these lipids. The pyrene probe, unlike DPH, is very sensitive to the pretransitions of DPPC and DSPC, removed in the presence of lindane. Both probes fail to detect any apparent effect of lindane in DMPC bilayers enriched with high cholesterol content (greater than 30 mol%). However, in DMPC bilayers with low cholesterol content (less than 30 mol%), for temperatures below the phase transition of DMPC, both probes detect fluidizing effects induced by lindane. Nevertheless, above the phase transition of DMPC, 2Py(3)2Py detects ordering effects of lindane, whereas DPH detects hardly any effect. These results in DMPC bilayers with low cholesterol content are qualitatively similar to those described for DMPC without cholesterol.  相似文献   

17.
Tran R  Ho S  Dea P 《Biophysical chemistry》2004,110(1-2):39-47
Differential scanning calorimetry (DSC) and fluorescence spectroscopy are useful techniques for investigating the phase transitions of phospholipid bilayers. In this study, these methods have been extended to determine the effects of ethanol on DSPC and DSPC/2 mol.% cholesterol bilayers. The biphasic effect of the main transition was observed on the DSC heating scans above 0.60 M ethanol. In addition, the concentration at which the biphasic effect occurs is not significantly changed in the presence of 2 mol.% cholesterol. For the fluorescence studies, 1,6-diphenyl-1,3,5-hexatriene (DPH) has been incorporated into the bilayer to monitor the phase transitions through the displacement of DPH. This fluorescent probe is used to directly determine the onset of interdigitation in the bilayer systems as indicated by a large decrease in the DPH fluorescence intensity. The addition of cholesterol lowered and broadened the transition temperatures of the phosphatidylcholine (PC) system. However, 2 mol.% cholesterol did not have a significant effect on the induction of the interdigitated phase in DSPC as observed from the small difference in ethanol threshold concentration for the two systems. This suggests that DSPC forms a more stable interdigitated gel phase than other PCs with shorter acyl chains.  相似文献   

18.
Structures and phase behavior of multilamellar vesicles of 1,2-dipalmitoyl-L-phosphatidylcholine (DPPC) containing various amount of ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) were investigated by small-angle X-ray diffraction. Below 3.5 mol% GM3 content, the phase behavior was similar to that of pure DPPC except for a slight increase of lamellar repeat distance in the L(beta'), the P(beta') and the L(alpha) phases and a decrease of the pretransition temperature. In the range of 4-12 mol% GM3 content, another phase which has larger repeat distances coexisted with the phase observed below 3.5 mol% GM3 content. This has been interpreted that the phase separation into GM3-poor phase (denoted as A-phase) and GM3-rich phase (denoted as B-phase) took place. Above 13 mol% GM3 content, the B-phase became dominant. This phase separation may be related to the formation of GM3-enriched microdomains that had been observed on the cell surfaces which express large amounts of GM3, such as murine B16 melanoma (J. Biol. Chem. 260 (1985) 13328).  相似文献   

19.
The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of different phospholipid components, and to efficiently regulate the motional freedom and hydrophobicity of membranes, so that they can withstand even drastic changes in environmental conditions, such as high external hydrostatic pressure.  相似文献   

20.
The dielectric dispersion in the MHz range of the zwitterionic dipolar phosphocholine head groups has been measured from 0--70 degrees C for various mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol. The abrupt change in the derived relaxation frequency f2 observed for pure DPPC at the gel-to-liquid crystalline phase transition at 42 degrees C reduces to a more gradual increase of frequency with temperature as the cholesterol content is increased. In general the presence of cholesterol increases the DPPC head group mobility due to its spacing effect. Below 42 degrees C no sudden changes in f2 are found at 20 or 33 mol% cholesterol, where phase boundaries have been suggested from other methods. Above 42 degrees C, however, a decrease in f2 at cholesterol contents up to 20--30 mol% is found. This is thought to be partly due to an additional restricting effect of the cholesterol on the number of hydrocarbon chain conformations and consequently on the area occupied by the DPPC molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号