首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A putative serine protease was identified among non-structural proteins of southern bean mosaic virus (SBMV) by sequence comparison with cellular and viral proteases. The predicted SBMV protease displayed a significant similarity to cysteine proteases of picornaviruses, providing a possible evolutionary link between the two enzyme classes. It is suggested that SBMV follows the general expression strategy characteristic of other positive-strand RNA viruses containing 5'-terminal covalently linked proteins (VPg), i.e. generation of functional proteins by polyprotein processing.  相似文献   

2.
SUMMARY: The proteases of retroviruses, such as leukemia viruses, immunodeficiency viruses (including the human immunodeficiency virus, HIV), infectious anemia viruses, and mammary tumor viruses, form a family with the proteases encoded by several retrotransposons in Drosophila and yeast and endogenous viral sequences in primates. Retroviral proteases are key enzymes in viral propagation and are initially synthesized with other viral proteins as polyprotein precursors that are subsequently cleaved by the viral protease activity at specific sites to produce mature, functional units. Active retroviral proteases are homodimers, with each dimer structurally related to the larger class of single-chain aspartic peptidases. Each monomer has four structural elements: two distinct hairpin loops, a wide loop containing the catalytic aspartic acid and an alpha helix. Retroviral gene sequences can vary between infected individuals, and mutations affecting the binding cleft of the protease or the substrate cleavage sites can alter the response of the virus to therapeutic drugs. The need to develop new drugs against HIV will continue to be, to a large extent, the driving force behind further characterization of retroviral proteases.  相似文献   

3.
The effect of different protease inhibitors on the proteolytic processing of the plum pox potyvirus (PPV) polyprotein has been analyzed. Human cystatin C, an inhibitor of cysteine proteases, interfered with the outoprocessing of the viral papain-like cysteine protease HCPro. Unexpectedly, it also had an inhibitory effect on the autocatalytic cleavage of the Nla protease which, although it has a Cys residue in its active center, has been described as structurally related to serine proteases. Other protease inhibitors tested had no effect on any of the cleavage events analyzed.  相似文献   

4.
Papain-like cysteine proteases are the most numerous family of the cysteine protease class. They are expressed throughout the animal and plant kingdoms as well as in viruses and bacteria. More recently, this protease family has drawn attention as a potential pharmaceutical drug target in diseases characterized by excessive extracellular matrix degradation such as in osteoporosis, arthritis, vascular diseases, and cancer. Moreover, papain-like cysteine proteases have been identified as critical components of the life cycle and invasive potential of various human and live stock pathogens as well as major allergens. Therefore, this protease class is rigorously studied and requires sufficient amounts of protease protein to analyze structure-activity relationships, their 3-D structures as well as to screen for and optimize potent and selective inhibitors. This review summarizes approaches to generate active papain-like cysteine proteases by heterologous expression in a variety of expression systems.  相似文献   

5.
The NS3-NS4A serine protease of hepatitis C virus (HCV) mediates four specific cleavages of the viral polyprotein and its activity is considered essential for the biogenesis of the HCV replication machinery. Despite extensive biochemical and structural characterization, the analysis of natural variants of this enzyme has been limited by the lack of an efficient replication system for HCV in cultured cells. We have recently described the generation of chimeric HCV-Sindbis viruses whose propagation depends on the NS3-NS4A catalytic activity. NS3-NS4A gene sequences were fused to the gene coding for the Sindbis virus structural polyprotein in such a way that processing of the chimeric polyprotein, nucleocapsid assembly, and production of infectious viruses required NS3-NS4A-mediated proteolysis (G. Filocamo, L. Pacini, and G. Migliaccio, J. Virol. 71:1417–1427, 1997). Here we report the use of these chimeric viruses to select and characterize active variants of the NS3-NS4A protease. Our original chimeric viruses displayed a temperature-sensitive phenotype and formed lysis plaques much smaller than those formed by wild-type (wt) Sindbis virus. By serially passaging these chimeric viruses on BHK cells, we have selected virus variants which formed lysis plaques larger than those produced by their progenitors and produced NS3-NS4A proteins different in size and/or sequence from those of the original viruses. Characterization of the selected protease variants revealed that all of the mutated proteases still efficiently processed the chimeric polyprotein in infected cells and also cleaved an HCV substrate in vitro. One of the selected proteases was expressed in a bacterial system and showed a catalytic efficiency comparable to that of the wt recombinant protease.  相似文献   

6.
Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size.  相似文献   

7.
The 72 known members of the flavivirus genus include lethal human pathogens such as Yellow Fever, West Nile, and Dengue viruses. There is at present no known chemotherapy for any flavivirus and no effective vaccines for most. A common genomic organization and molecular mechanisms of replication in hosts are shared by flaviviruses with a viral serine protease playing a pivotal role in processing the viral polyprotein into component polypeptides, an obligatory step in viral replication. Using the structure of the dengue serine protease complexed with a protein inhibitor as a template, we have identified five compounds, which inhibit the enzyme. We also describe parallel inhibitory activity of these compounds against the West Nile virus Protease. A few of the compounds appear to provide a template for design of more potent and specific inhibitors of the dengue and West Nile virus proteases. Sequence similarities among flaviviral proteases suggests that such compounds might also possibly inhibit other flaviviral proteases.  相似文献   

8.
Recently we tentatively identified, by sequence comparison, central domains of the NS3 proteins of flaviviruses and the respective portion of the pestivirus polyprotein as RNA helicases (A.E.G. et al., submitted). Alignment of the N-proximal domains of the same proteins revealed conservation of short sequence stretches resembling those around the catalytic Ser, His and Asp residues of chymotrypsin-like proteases. A statistically significant similarity has been detected between the sequences of these domains and those of the C-terminal serine protease domains of alphavirus capsid proteins. It is suggested that flavivirus NS3 and the respective pestivirus protein contain at least two functional domains, the N-proximal protease and the C-proximal helicase one. The protease domain is probably involved in the processing of viral non-structural proteins.  相似文献   

9.
Recent advances in the molecular biology of hepatitis C virus.   总被引:26,自引:0,他引:26  
  相似文献   

10.
Pestiviruses are positive-strand RNA viruses closely related to human hepatitis C virus. Gene expression of these viruses occurs via translation of a polyprotein, which is further processed by cellular and viral proteases. Here we report the formation of a stable complex between an as-yet-undescribed cellular J-domain protein, a member of the DnaJ-chaperone family, and pestiviral nonstructural protein NS2. Accordingly, we termed the cellular protein Jiv, for J-domain protein interacting with viral protein. Jiv has the potential to induce in trans one specific processing step in the viral polyprotein, namely, cleavage of NS2-3. Efficient generation of its cleavage product NS3 has previously been shown to be obligatory for the cytopathogenicity of the pestiviruses. Regulated expression of Jiv in cells infected with noncytopathogenic bovine viral diarrhea virus disclosed a direct correlation between the intracellular level of Jiv, the extent of NS2-3 cleavage, and pestiviral cytopathogenicity.  相似文献   

11.
The leader protease of foot-and-mouth disease virus, as well as cleaving itself from the nascent viral polyprotein, disables host cell protein synthesis by specific proteolysis of a cellular protein: the eukaryotic initiation factor 4G (eIF4G). The crystal structure of the leader protease presented here comprises a globular catalytic domain reminiscent of that of cysteine proteases of the papain superfamily, and a flexible C-terminal extension found intruding into the substrate-binding site of an adjacent molecule. Nevertheless, the relative disposition of this extension and the globular domain to each other supports intramolecular self-processing. The different sequences of the two substrates cleaved during viral replication, the viral polyprotein (at LysLeuLys/GlyAlaGly) and eIF4G (at AsnLeuGly/ArgThrThr), appear to be recognized by distinct features in a narrow, negatively charged groove traversing the active centre. The structure illustrates how the prototype papain fold has been adapted to the requirements of an RNA virus. Thus, the protein scaffold has been reduced to a minimum core domain, with the active site being modified to increase specificity. Furthermore, surface features have been developed which enable C-terminal self-processing from the viral polyprotein.  相似文献   

12.
Pestiviruses represent the first RNA viruses for which recombination with cellular protein-coding sequences has been reported. As a result of such recombinations cytopathogenic (cp) pestiviruses can develop from noncytopathogenic (noncp) viruses. In the case of bovine viral diarrhea virus (BVDV), the generation of cp mutants is linked to the induction of the lethal syndrome mucosal disease (MD) in cattle. The cp BVDV JaCP was isolated from an animal which had come down with MD. The genome of JaCP contains a novel kind of cellular insertion (LC3*) which is flanked by duplicated pestivirus sequences. Neither insertion nor duplication is present in the genome of the accompanying noncp virus JaNCP. As part of the viral polyprotein, the insertion in the JaCP genome is translated into a polypeptide almost identical to a fragment of light chain 3, a subunit of the microtubule-associated proteins 1A and 1B from the rat. Transient-expression studies revealed that the LC3* sequence is able to induce an additional cleavage of the viral polyprotein. The respective cleavage occurs directly downstream of the LC3*-encoded sequence and is not dependent on the NS3 serine protease. Insertion of LC3* into an infectious noncp pestivirus cDNA clone without duplicated viral sequences resulted in recovery of a defective cp virus able to replicate only in the presence of a noncp helper virus. In contrast, introduction of both insertion and duplication led to an autonomously replicating cp virus.  相似文献   

13.
The hepatitis C virus (HCV) NS3 protease cleaves the viral polyprotein at specific sites to release the putative components of the HCV replication machinery. Selective inhibition of this enzyme is predicted to block virus replication, and NS3 is thus considered an attractive candidate for development of anti-HCV therapeutics. To set up a system for analysis of NS3 protease activity in cultured cells, we constructed a family of chimeric Sindbis viruses which carry sequences coding for NS3 and its activator, NS4A, in their genomes. HCV sequences were fused to the gene coding for the Sindbis virus structural polyprotein via an NS3-specific cleavage site, with the expectation that processing of the chimeric polyprotein, nucleocapsid assembly, and generation of viable viral particles would occur only upon NS3-dependent proteolysis. Indeed, the chimeric genomes encoding an active NS3 protease produced infectious viruses in mammalian cells, while those encoding NS3 inactivated by alanine substitution of the catalytic serine did not. However, in infected cells chimeric genomes recombined, splicing out HCV sequences and reverting to pseudo-wild-type Sindbis virus. To force retention of HCV sequences, we modified one of the initial chimeras by introducing a second NS3 cleavage site in the Sindbis virus portion of the recombinant polyprotein, anticipating that revertants not encoding an active NS3 protease would not be viable. The resulting chimera produced infectious viruses which replicated at a lower rate than the parental construct and displayed a marked temperature dependence in the formation of lysis plaques yet stably expressed NS3.  相似文献   

14.
Multiple proteases in foot-and-mouth disease virus replication.   总被引:7,自引:3,他引:4       下载免费PDF全文
Translation of foot-and-mouth disease virus RNA in a rabbit reticulocyte lysate for short time intervals resulted in the production of the peptides P20a , P16, and P88 (Lab, Lb, and P1) (R. R. Rueckert , Recommendations of the 3rd European Study Group on Molecular Biology of Picornavirus, Urbino , Italy, 1983). If further translation was prevented, the structural protein precursor P88 was not cleaved, even after prolonged incubation. This result indicates that the mechanism of the cleavage between P20a -P16 and P88 and of that between P88 and P52 (P2) differs from the mechanism of the secondary cleavages which produce the structural proteins. Furthermore, treatment of foot-and-mouth disease virus-infected cells with the protease inhibitor D-valyl phenylalanyl lysyl chloromethyl ketone prevented the in vivo cleavage between P20a -P16 and P88 but had no effect on any of the other cleavage events. These results suggest that the cleavage of the foot-and-mouth disease virus polyprotein utilizes two different host proteases.  相似文献   

15.
The amino acid sequence of the polyprotein deduced from the nucleotide sequence of the Japanese hepatitis C virus genome (N. Kato et. al. (1990) Proc. Natl. Acad. Sci. USA 87, 9524–9528)indicated that this virus is a member of a new class of positive-stranded RNA viruses. Several domains of this polyprotein also showed weak homology with those of flaviviruses and pestiviruses including the chymotrypsin-like serine proteinase. NTPase and RNA-dependent RNA polymerase  相似文献   

16.
The RNA genome of hepatitis G virus (HGV) encodes a large polyprotein that is processed to mature proteins by viral-encoded proteases. The HGV NS3 protease is responsible for the cleavage of the HGV polyprotein at four different locations. No conserved sequence motif has been identified for the cleavage sites of the NS3 protease. To determine the substrate specificity of the NS3 protease, amino acid sequences cleaved by the NS3 protease were obtained from randomized sequence libraries by using a screening method referred to as GASP (Genetic Assay for Site-specific Proteolysis). Based on statistical analyses of the obtained cleavable sequences, a consensus substrate sequence was deduced: Gln-Glu-Thr-Leu-Val downward arrow Ser, with the scissile bond located between Val and Ser. The relevance of this peptide as a cleavable substrate was further supported by molecular modeling of the NS3 protease. Our result would provide an insight on the molecular activity of the NS3 protease and may be useful for the design of substrate-based inhibitors.  相似文献   

17.
Abstract

Despite the rapid mutational change that is typical of positive-strand RNA viruses, enzymes mediating the replication and expression of virus genomes contain arrays of conserved sequence motifs. Proteins with such motifs include RNA-dependent RNA polymerase, putative RNA helicase, chymotrypsin-like and papain-like proteases, and methyltransferases. The genes for these proteins form partially conserved modules in large subsets of viruses. A concept of the virus genome as a relatively evolutionarily stable “core” of housekeeping genes accompanied by a much more flexible “shell” consisting mostly of genes coding for virion components and various accessory proteins is discussed. Shuffling of the “shell” genes including genome reorganization and recombination between remote groups of viruses is considered to be one of the major factors of virus evolution.

Multiple alignments for the conserved viral proteins were constructed and used to generate the respective phylogenetic trees. Based primarily on the tentative phylogeny for the RNA-dependent RNA polymerase, which is the only universally conserved protein of positive-strand RNA viruses, three large classes of viruses, each consisting of distinct smaller divisions, were delineated. A strong correlation was observed between this grouping and the tentative phylogenies for the other conserved proteins as well as the arrangement of genes encoding these proteins in the virus genome. A comparable correlation with the polymerase phylogeny was not found for genes encoding virion components or for genome expression strategies. It is surmised that several types of arrangement of the “shell” genes as well as basic mechanisms of expression could have evolved independently in different evolutionary lineages.

The grouping revealed by phylogenetic analysis may provide the basis for revision of virus classification, and phylogenetic taxonomy of positive-strand RNA viruses is outlined. Some of the phylogenetically derived divisions of positive-strand RNA viruses also include double-stranded RNA viruses, indicating that in certain cases the type of genome nucleic acid may not be a reliable taxonomic criterion for viruses.

Hypothetical evolutionary scenarios for positive-strand RNA viruses are proposed. It is hypothesized that all positive-strand RNA viruses and some related double-stranded RNA viruses could have evolved from a common ancestor virus that contained genes for RNA-dependent RNA polymerase, a chymotrypsin-related protease that also functioned as the capsid protein, and possibly an RNA helicase.  相似文献   

18.
The coronavirus replicase gene encodes one or two papain-like proteases (termed PL1pro and PL2pro) implicated in the N-terminal processing of the replicase polyprotein and thus contributing to the formation of the viral replicase complex that mediates genome replication. Using consensus fold recognition with the 3D-JURY meta-predictor followed by model building and refinement, we developed a structural model for the single PLpro present in the severe acute respiratory syndrome coronavirus (SCoV) genome, based on significant structural relationships to the catalytic core domain of HAUSP, a ubiquitin-specific protease (USP). By combining the SCoV PLpro model with comparative sequence analyses we show that all currently known coronaviral PLpros can be classified into two groups according to their binding site architectures. One group includes all PL2pros and some of the PL1pros, which are characterized by a restricted USP-like binding site. This group is designated the R-group. The remaining PL1pros from some of the coronaviruses form the other group, featuring a more open papain-like binding site, and is referred to as the O-group. This two-group, binding site-based classification is consistent with experimental data accumulated to date for the specificity of PLpro-mediated polyprotein processing and PLpro inhibition. It also provides an independent evaluation of the similarity-based annotation of PLpro-mediated cleavage sites, as well as a basis for comparison with previous groupings based on phylogenetic analyses.  相似文献   

19.
Calicivirus proteases cleave the viral precursor polyprotein encoded by open reading frame 1 (ORF1) into multiple intermediate and mature proteins. These proteases have conserved histidine (His), glutamic acid (Glu) or aspartic acid (Asp), and cysteine (Cys) residues that are thought to act as a catalytic triad (i.e. general base, acid and nucleophile, respectively). However, is the triad critical for processing the polyprotein? In the present study, we examined these amino acids in viruses representing the four major genera of Caliciviridae: Norwalk virus (NoV), Rabbit hemorrhagic disease virus (RHDV), Sapporo virus (SaV) and Feline calicivirus (FCV). Using single amino‐acid substitutions, we found that an acidic amino acid (Glu or Asp), as well as the His and Cys in the putative catalytic triad, cannot be replaced by Ala for normal processing activity of the ORF1 polyprotein in vitro. Similarly, normal activity is not retained if the nucleophile Cys is replaced with Ser. These results showed the calicivirus protease is a Cys protease and the catalytic triad formation is important for protease activity. Our study is the first to directly compare the proteases of the four representative calicivirus genera. Interestingly, we found that RHDV and SaV proteases critically need the acidic residues during catalysis, whereas proteolytic cleavage occurs normally at several cleavage sites in the ORF1 polyprotein without a functional acid residue in the NoV and FCV proteases. Thus, the substrate recognition mechanism may be different between the SaV and RHDV proteases and the NoV and FCV proteases.  相似文献   

20.
The genomes of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) consist of single-stranded RNA encoding polyproteins, which are processed to individual functional proteins by virus-encoded specific proteases. These proteases have been used as targets for drug development. Here, instead of targeting these proteases to inhibit viral infection, we utilized the protease activity to activate a toxic protein to prevent viral infection. We engineered the MazE-MazF antitoxin-toxin system of Escherichia coli to fuse a C-terminal 41-residue fragment of antitoxin MazE to the N-terminal end of toxin MazF with a linker having a specific protease cleavage site for either HIV PR (HIV-1 protease), NS3 protease (HCV protease), or factor Xa. These fusion proteins formed a stable dimer (instead of the MazF(2)-MazE(2)-MazF(2) heterohexamer in nature) to inactivate the ACA (sequence)-specific mRNA interferase activity of MazF. When the fusion proteins were incubated with the corresponding proteases, the MazE fragment was cleaved from the fusion proteins, releasing active MazF, which then acted as an ACA-specific mRNA interferase cleaving single-stranded MS2 phage RNA. The intramolecular regulation of MazF toxicity by proteases as demonstrated may provide a novel approach for preventive and therapeutic treatments of infection by HIV-1, HCV, and other single-stranded RNA viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号