首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p27 is a key regulator of cell proliferation. While it opposes cell cycle progression by binding to and inhibiting cyclin E-Cdk2, T157/198 phosphorylation of p27 promotes its assembly of D-type cyclin-CDKs. In addition to its actions on the cell cycle, p27 regulates CDK-independent cytoplasmic functions. In human cancers, oncogenic activation of the PI3K signaling pathway often results in cytoplasmic mislocalization of p27. Cytoplasmic p27 plays an important role in cell motility and migration; it binds and modulates activation of the RhoA/ROCK cascade. p27:RhoA binding is facilitated by p27 phosphorylation at threonine 198. Accumulation of cytoplasmic p27 leads to increased cellular motility, a critical event in tumor metastasis. Further characterization of post-translational modifications governing p27 localization and its action on RhoA and the actin cytoskeleton may provide critical insights into human cancer metastasis.  相似文献   

2.
3.
The biological behaviors of hepatocellular carcinoma (HCC) are complex mainly due to heterogeneity of progressive genetic and epigenetic mutations as well as tumor environment. Hepatocyte growth factor (HGF)/c-Met signaling pathway is regarded to be a prototypical example for stromal-epithelial interactions during developmental morphogenesis, wound healing, organ regeneration and cancer progression. And p53 plays as an important regulator of Met-dependent cell motility and invasion. Present study showed that 2 HCC cell lines, Hep3B and HepG2, displayed different invasive capacity when treated with HGF which was secreted by hepatic stellate cells (HSCs). We found that HGF promoted Hep3B cells invasion and migration as well as epithelial-mesenchymal transition (EMT) occurrence because Hep3B was p53 deficient, which leaded to the c-Met over-expression. Then we found that HGF/c-Met promoted Hep3B cells invasion and migration by upregulating Snail expression. In conclusion, HGF/c-Met signaling is enhanced by loss of p53 expression, resulting in increased ability of invasion and migration by upregulating the expression of Snail.  相似文献   

4.
The Crk-associated substrate (Cas) is a unique docking protein that possesses a repetitive stretch of tyrosine-containing motifs and an Src homology 3 (SH3) domain. Embryonic fibroblasts lacking Cas demonstrated resistance to Src-induced transformation along with impaired actin bundling and cell motility, indicating critical roles of Cas in actin cytoskeleton organization, cell migration, and oncogenesis. To gain further insight into roles of each domain of Cas in these processes, a compensation assay was performed by expressing a series of Cas mutants in Cas-deficient fibroblasts. The results showed that motifs containing YDxP were indispensable for actin cytoskeleton organization and cell migration, suggesting that CrkII-mediated signaling regulates these biological processes. The C-terminal Src-binding domain played essential roles in cell migration and membrane localization of Cas, although it was dispensable in the organization of actin stress fibers. Furthermore, the Src-binding domain was also a prerequisite for Src transformation possibly, because of its crucial role in the phosphorylation of Cas during transformation. Overall, differential uses of the Cas domains in individual biological processes were demonstrated.  相似文献   

5.
Hepatocyte growth factor (HGF) is critical for triggering metastasis of hepatocellular carcinoma cell (HCC). Extracellular signal-regulated kinase (ERK) mediates HGF-induced cell migration via focal adhesion signaling. Protein kinase C (PKC) is a negative regulator of ERK activation, however, both PKC and ERK were required for HGF-induced cell migration. To address this intriguing issue, the signal mechanisms for HGF-induced HepG2 cell migration were investigated in a long-term fashion. HGF-induced phosphorylations of ERK, Src (at Tyr 416) and paxillin (at Ser178 and Tyr31) were up and down for 3 times within 24 h. HGF also induced fluctuant PKC activation and Rac degradation. Consistently, HGF induced intermittent actin polarization within 24 h, which can be blocked by the inhibitors of PKC (Bisindolymaleimide) and ERK. Inhibitor studies revealed that ERK was required for HGF-induced paxillin phosphorylation at Ser178, whereas PKC and Rac-1 may suppress HGF-induced phosphorylation of ERK and paxillin (at Ser178) and upregulate phosphorylation of paxillin at Tyr31. Based on shRNA technique, PKCα and δ were responsible for suppressing HGF-induced phosphorylation of ERK and paxillin (at Ser178), whereas PKC ε and ζ were required for phosphorylation of paxillin at Tyr31. The HGF-induced fluctuant signaling is reminiscent of c-Met endocytosis. Using Concanavalin A, an inhibitor of endocytosis, we found that c-Met endocytosis was required for PKC to suppress ERK phosphorylation. Moreover, HGF-induced c-Met degradation was also fluctuant, which can be prevented by Bisindolymaleimide. In conclusion, PKC is critical for mediating HGF-induced fluctuant ERK-paxillin signaling during cell migration, probably via triggering endosomal degradation of c-Met.  相似文献   

6.
Prolactin (PRL) regulates cytoskeletal rearrangement and cell motility. PRL-activated Janus tyrosine kinase 2 (JAK2) phosphorylates the p21-activated serine-threonine kinase (PAK)1 and the Src homology 2 (SH2) domain-containing adapter protein SH2B1β. SH2B1β is an actin-binding protein that cross-links actin filaments, whereas PAK1 regulates the actin cytoskeleton by different mechanisms, including direct phosphorylation of the actin-binding protein filamin A (FLNa). Here, we have used a FLNa-deficient human melanoma cell line (M2) and its derivative line (A7) that stably expresses FLNa to demonstrate that SH2B1β and FLNa are required for maximal PRL-dependent cell ruffling. We have found that in addition to two actin-binding domains, SH2B1β has a FLNa-binding domain (amino acids 200-260) that binds directly to repeats 17-23 of FLNa. The SH2B1β-FLNa interaction participates in PRL-dependent actin rearrangement. We also show that phosphorylation of the three tyrosines of PAK1 by JAK2, as well as the presence of FLNa, play a role in PRL-dependent cell ruffling. Finally, we show that the actin- and FLNa-binding-deficient mutant of SH2B1β (SH2B1β 3Δ) abolished PRL-dependent ruffling and PRL-dependent cell migration when expressed along with PAK1 Y3F (JAK2 tyrosyl-phosphorylation-deficient mutant). Together, these data provide insight into a novel mechanism of PRL-stimulated regulation of the actin cytoskeleton and cell motility via JAK2 signaling through FLNa, PAK1, and SH2B1β. We propose a model for PRL-dependent regulation of the actin cytoskeleton that integrates our findings with previous studies.  相似文献   

7.
Activation of the c-Met receptor tyrosine kinase through its ligand, hepatocyte growth factor (HGF), promotes mitogenic, motogenic, and morphogenic cellular responses. Aberrant HGF/c-Met signaling has been strongly implicated in tumor cell invasion and metastasis. Both HGF and its receptor c-Met have been shown to be overexpressed in human synovial sarcoma, which often metastasizes to the lung; however, little is known about HGF-mediated biological effects in this sarcoma. Here, we provide evidence that Crk adaptor protein is required for the sustained phosphorylation of c-Met-docking protein Grb2-associated binder 1 (Gab1) in response to HGF, leading to the enhanced cell motility of human synovial sarcoma cell lines SYO-1, HS-SY-II, and Fuji. HGF stimulation induced the sustained phosphorylation on Y307 of Gab1 where Crk was recruited. Crk knockdown by RNA interference disturbed this HGF-induced tyrosine phosphorylation of Gab1. By mutational analysis, we identified that Src homology 2 domain of Crk is indispensable for the induction of the phosphorylation on multiple Tyr-X-X-Pro motifs containing Y307 in Gab1. HGF remarkably stimulated cell motility and scattering of synovial sarcoma cell lines, consistent with the prominent activation of Rac1, extreme filopodia formation, and membrane ruffling. Importantly, the elimination of Crk in these cells induced the disorganization of actin cytoskeleton and complete abolishment of HGF-mediated Rac1 activation and cell motility. Time-lapse microscopic analysis revealed the significant attenuation in scattering of Crk knockdown cells following HGF treatment. Furthermore, the depletion of Crk remarkably inhibited the tumor formation and its invasive growth in vivo. These results suggest that the sustained phosphorylation of Gab1 through Crk in response to HGF contributes to the prominent activation of Rac1 leading to enhanced cell motility, scattering, and cell invasion, which may support the crucial role of Crk in the aggressiveness of human synovial sarcoma.  相似文献   

8.
The Rho GTPases are critical regulators of the actin cytoskeleton and are required for cell adhesion, migration, and polarity. Among the key Rho regulatory proteins in the context of cell migration are the p190 RhoGAPs (p190A and p190B), which function to modulate Rho signaling in response to integrin engagement. The p190 RhoGAPs undergo complex regulation, including phosphorylation by several identified kinases, interactions with phospholipids, and association with a variety of cellular proteins. Here, we have identified an additional regulatory mechanism unique to p190A RhoGAP that involves priming-dependent phosphorylation by glycogen synthase-3-beta (GSK-3beta), a kinase previously implicated in establishing cell polarity. We found that p190A-deficient fibroblasts exhibit a defect in directional cell migration reflecting a requirement for GSK-3beta-mediated phosphorylation of amino acids in the C-terminal "tail" of p190A. This phosphorylation leads to inhibition of p190A RhoGAP activity in vitro and in vivo. These studies identify p190A as a novel GSK-3beta substrate and reveal a mechanism by which GSK-3beta contributes to cellular polarization in directionally migrating cells via effects on Rho GTPase activity.  相似文献   

9.
The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas -/- mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation.  相似文献   

10.
Hepatocyte Growth Factor (HGF)/c-MET signaling has an emerging role in promoting cell proliferation, survival, migration, wound repair and branching in a variety of cell types. HGF plays a crucial role as a mediator of stromal–epithelial interactions in the normal prostate but the precise biological function of HGF/c-Met interaction in the normal prostate and in prostate cancer is not clear. HGF has two naturally occurring splice variants and NK1, the smallest of these HGF variants, consists of the HGF amino terminus through the first kringle domain. We evaluated the intracellular signaling cascades and the morphological changes triggered by NK1 in human prostate epithelial cell line PNT1A which shows molecular and biochemical properties close to the normal prostate epithelium. We demonstrated that these cells express a functional c-MET, and cell exposure to NK1 induces the phosphorylation of tyrosines 1313/1349/1356 residues of c-MET which provide docking sites for signaling molecules. We observed an increased phosphorylation of ERK1/2, Akt, c-Src, p125FAK, SMAD2/3, and STAT3, down-regulation of the expression of epithelial cell–cell adhesion marker E-cadherin, and enhanced expression levels of mesenchymal markers vimentin, fibronectin, vinculin, α-actinin, and α-smooth muscle actin. This results in cell proliferation, in the appearance of a mesenchymal phenotype, in morphological changes resembling cell scattering and in wound healing. Our findings highlight the function of NK1 in non-tumorigenic human prostatic epithelial cells and provide a picture of the signaling pathways triggered by NK1 in a unique cell line.  相似文献   

11.
The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.  相似文献   

12.
Recently, mesenchymal stem cells (MSCs) have been extensively used for cell‐based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time‐lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF‐stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F‐actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury. J. Cell. Physiol. 228: 149–162, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
HGF, the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, which are processes that play a crucial role in cell motility during normal development and malignant transformation. We and others have shown earlier that the adapter protein CrkII and its associated proteins positively regulate cell migratory events in response to both haptotactic and chemotactic stimuli, including HGF. Here, we demonstrate for the first time that phosphorylation of CrkII serves as a negative feedback loop to regulate motile responses upon Met stimulation. Thus, we found that the treatment of cells with HGF induces tyrosine phosphorylation of CrkII at Y221, which in turn results in inhibition of CrkII signaling via formation of an intramolecular pY221-SH2-domain interaction. Accordingly, expression of a mutant form of CrkII, CrkII-Y221F, which is resistant to phosphorylation at this negative regulatory site, enhanced Met-induced cell motility. Furthermore, we demonstrate here that the Met-induced CrkII phosphorylation depends on the Abl tyrosine kinase activity. As a corollary, we found that Abl inhibitors, such as the STI571 compound, significantly enhanced Met-induced cell motility, but failed to do so in cells that expressed the CrkII-Y221F mutant protein. Taken together, these results demonstrate that the Abl tyrosine kinase functions as a negative regulator of Met-induced cell migration, and that it does so by inducing CrkII phosphorylation at the site Y221.  相似文献   

15.
p27Kip1 (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces promitogenic signals from various nonreceptor tyrosine kinases by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a “conduit” for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multistep signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of posttranslational modification may participate in similar signaling conduits.  相似文献   

16.
17.
Hepatocyte growth factor (HGF) has an anti-proliferative effect on many types of tumor cell lines and tumors in vivo. We found previously that inhibition of HGF-induced proliferation in HepG2 hepatoma cells is caused by cell cycle arrest at G1 through a high intensity ERK signal, which represses Cdk2 activity. To examine further the mechanisms of G1 arrest by HGF, we analyzed the Cdk inhibitor p16(INK4a), which has an anti-proliferative function through cell cycle arrest at G1. We found that HGF treatment drastically increased endogenous p16 levels. Knockdown of p16 with small interfering RNA reversed the arrest, indicating that the induction of p16 is required for G1 arrest by HGF. Analysis of the promoter of the human p16 gene identified the proximal Ets-binding site as a responsive element for HGF, and this responded to the high intensity ERK signal. HGF treatment of the cells led to a redistribution of p21(CIP1) and p27(KIP1) from Cdk4 to Cdk2. The redistribution was blocked by the knockdown of p16 with small interfering RNA, which restored the Cdk2 activity repressed by HGF, demonstrating the requirement of p16 induction for the redistribution and eventual repression of Cdk2 activity. Our results reveal a signaling pathway for G1 arrest induced by HGF.  相似文献   

18.
Increased cell motility and survival are important hallmarks of metastatic tumor cells. However, the mechanisms that regulate the interplay between these cellular processes remain poorly understood. In these studies, we demonstrate that CCL2, a chemokine well known for regulating immune cell migration, plays an important role in signaling to breast cancer cells. We report that in a panel of mouse and human breast cancer cell lines CCL2 enhanced cell migration and survival associated with increased phosphorylation of Smad3 and p42/44MAPK proteins. The G protein-coupled receptor CCR2 was found to be elevated in breast cancers, correlating with CCL2 expression. RNA interference of CCR2 expression in breast cancer cells significantly inhibited CCL2-induced migration, survival, and phosphorylation of Smad3 and p42/44MAPK proteins. Disruption of Smad3 expression in mammary carcinoma cells blocked CCL2-induced cell survival and migration and partially reduced p42/44MAPK phosphorylation. Ablation of MAPK phosphorylation in Smad3-deficient cells with the MEK inhibitor U0126 further reduced cell survival but not migration. These data indicate that Smad3 signaling through MEK-p42/44MAPK regulates CCL2-induced cell motility and survival, whereas CCL2 induction of MEK-p42/44MAPK signaling independent of Smad3 functions as an alternative mechanism for cell survival. Furthermore, we show that CCL2-induced Smad3 signaling through MEK-p42/44MAPK regulates expression and activity of Rho GTPase to mediate CCL2-induced breast cancer cell motility and survival. With these studies, we characterize an important role for CCL2/CCR2 chemokine signaling in regulating the intrinsic relationships between breast cancer cell motility and survival with implications on the metastatic process.  相似文献   

19.
Higher levels of focal adhesion kinase (FAK) are expressed in colon metastatic carcinomas. However, the signaling pathways and their mechanisms that control cell adhesion and motility, important components of cancer metastasis, are not well understood. We sought to identify the integrin-mediated mechanism of FAK cleavage and downstream signaling as well as its role in motility in human colon cancer GEO cells. Our results demonstrate that phosphorylated FAK (tyrosine 397) is cleaved at distinct sites by integrin signaling when cells attach to collagen IV. Specific blocking antibodies (clone P1E6) to integrin alpha2 inhibited FAK activation and cell motility (micromotion). Ectopic expression of the FAK C-terminal domain FRNK attenuated FAK and ERK phosphorylation and micromotion. Calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal blocked FAK cleavage, cell adhesion, and micromotion. Antisense approaches established an important role for mu-calpain in cell motility. Expression of wild type mu-calpain increased cell micromotion, whereas its point mutant reversed the effect. Further, cytochalasin D inhibited FAK phosphorylation and cleavage, cell adhesion, locomotion, and ERK phosphorylation, thus showing FAK activation downstream of actin assembly. We also found a pivotal role for FAK Tyr(861) phosphorylation in cell motility and ERK activation. Our results reveal a novel functional connection between integrin alpha2 engagement, FAK, ERK, and mu-calpain activation in cell motility and a direct link between FAK cleavage and enhanced cell motility. The data suggest that blocking the integrin alpha2/FAK/ERK/mu-calpain pathway may be an important strategy to reduce cancer progression.  相似文献   

20.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号