首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Organization of the genome is critical for maintaining cell-specific gene expression, ensuring proper cell function. It is well established that the nuclear lamina preferentially associates with repressed chromatin. However, the molecular mechanisms underlying repressive chromatin formation and maintenance at the nuclear lamina remain poorly understood. Here we show that emerin binds directly to HDAC3, the catalytic subunit of the nuclear co-repressor (NCoR) complex, and recruits HDAC3 to the nuclear periphery. Emerin binding stimulated the catalytic activity of HDAC3, and emerin-null cells exhibit increased H4K5 acetylation, which is the preferred target of the NCoR complex. Emerin-null cells exhibit an epigenetic signature similar to that seen in HDAC3-null cells. Emerin-null cells also had significantly less HDAC3 at the nuclear lamina. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear periphery by increasing the catalytic activity of HDAC3.  相似文献   

3.
4.
5.
6.
7.
In C2C12 myoblasts, endogenous histone deacetylase HDAC4 shuttles between cytoplasmic and nuclear compartments, supporting the hypothesis that its subcellular localization is dynamically regulated. However, upon differentiation, this dynamic equilibrium is disturbed and we find that HDAC4 accumulates in the nuclei of myotubes, suggesting a positive role of nuclear HDAC4 in muscle differentiation. Consistent with the notion of regulation of HDAC4 intracellular trafficking, we reveal that HDAC4 contains a modular structure consisting of a C-terminal autonomous nuclear export domain, which, in conjunction with an internal regulatory domain responsive to calcium/calmodulin-dependent protein kinase IV (CaMKIV), determines its subcellular localization. CaMKIV phosphorylates HDAC4 in vitro and promotes its nuclear-cytoplasmic shuttling in vivo. However, although 14-3-3 binding of HDAC4 has been proposed to be important for its cytoplasmic retention, we find this interaction to be independent of CaMKIV. Rather, the HDAC4.14-3-3 complex exists in the nucleus and is required to confer CaMKIV responsiveness. Our results suggest that the subcellular localization of HDAC4 is regulated by sequential phosphorylation events. The first event is catalyzed by a yet to be identified protein kinase that promotes 14-3-3 binding, and the second event, involving protein kinases such as CaMKIV, leads to efficient nuclear export of the HDAC4.14-3-3 complex.  相似文献   

8.
9.
Histone-modifying enzymes play essential roles in physiological and aberrant gene regulation. Since histone deacetylases (HDACs) are promising targets of cancer therapy, it is important to understand the mechanisms of HDAC regulation. Selective modulators of HDAC isoenzymes could serve as efficient and well-tolerated drugs. We show that HDAC2 undergoes basal turnover by the ubiquitin-proteasome pathway. Valproic acid (VPA), in addition to selectively inhibiting the catalytic activity of class I HDACs, induces proteasomal degradation of HDAC2, in contrast to other inhibitors such as trichostatin A (TSA). Basal and VPA-induced HDAC2 turnover critically depend on the E2 ubiquitin conjugase Ubc8 and the E3 ubiquitin ligase RLIM. Ubc8 gene expression is induced by both VPA and TSA, whereas only TSA simultaneously reduces RLIM protein levels and therefore fails to induce HDAC2 degradation. Thus, poly-ubiquitination and proteasomal degradation provide an isoenzyme-selective mechanism for downregulation of HDAC2.  相似文献   

10.
Histone deacetylase (HDAC) inhibitors inhibit the proliferation of transformed cells in vitro, restrain tumor growth in animals, and are currently being actively exploited as potential anticancer agents. To identify gene targets of the HDAC inhibitor trichostatin A (TSA), we compared the gene expression profiles of BALB/c-3T3 cells treated with or without TSA. Our results show that TSA up-regulates the expression of the gene encoding growth-differentiation factor 11 (Gdf11), a transforming growth factor beta family member that inhibits cell proliferation. Detailed analyses indicated that TSA activates the gdf11 promoter through a conserved CCAAT box element. A comprehensive survey of human HDACs revealed that HDAC3 is necessary and sufficient for the repression of gdf11 promoter activity. Chromatin immunoprecipitation assays showed that treatment of cells with TSA or silencing of HDAC3 expression by small interfering RNA causes the hyperacetylation of Lys-9 in histone H3 on the gdf11 promoter. Together, our results provide a new model in which HDAC inhibitors reverse abnormal cell growth by inactivation of HDAC3, which in turn leads to the derepression of gdf11 expression.  相似文献   

11.
12.
13.
In an effort to identify HDAC isoform selective inhibitors, we designed and synthesized novel, chiral 3,4-dihydroquinoxalin-2(1H)-one and piperazine-2,5-dione aryl hydroxamates showing selectivity (up to 40-fold) for human HDAC6 over other class I/IIa HDACs. The observed selectivity and potency (IC50 values 10–200 nM against HDAC6) is markedly dependent on the absolute configuration of the chiral moiety, and suggests new possibilities for use of chiral compounds in selective HDAC isoform inhibition.  相似文献   

14.
15.
Regulation of NF-kappaB transactivation function is controlled at several levels, including interactions with coactivator proteins. Here we show that the transactivation function of NF-kappaB is also regulated through interaction of the p65 (RelA) subunit with histone deacetylase (HDAC) corepressor proteins. Our results show that inhibition of HDAC activity with trichostatin A (TSA) results in an increase in both basal and induced expression of an integrated NF-kappaB-dependent reporter gene. Chromatin immunoprecipitation (ChIP) assays show that TSA treatment causes hyperacetylation of the wild-type integrated NF-kappaB-dependent reporter but not of a mutant version in which the NF-kappaB binding sites were mutated. Expression of HDAC1 and HDAC2 repressed tumor necrosis factor (TNF)-induced NF-kappaB-dependent gene expression. Consistent with this, we show that HDAC1 and HDAC2 target NF-kappaB through a direct association of HDAC1 with the Rel homology domain of p65. HDAC2 does not interact with NF-kappaB directly but can regulate NF-kappaB activity through its association with HDAC1. Finally, we show that inhibition of HDAC activity with TSA causes an increase in both basal and TNF-induced expression of the NF-kappaB-regulated interleukin-8 (IL-8) gene. Similar to the wild-type integrated NF-kappaB-dependent reporter, ChIP assays showed that TSA treatment resulted in hyperacetylation of the IL-8 promoter. These data indicate that the transactivation function of NF-kappaB is regulated in part through its association with HDAC corepressor proteins. Moreover, it suggests that the association of NF-kappaB with the HDAC1 and HDAC2 corepressor proteins functions to repress expression of NF-kappaB-regulated genes as well as to control the induced level of expression of these genes.  相似文献   

16.
17.
18.
19.
20.
Novel delta-lactam-based HDAC inhibitors which have various substituted benzyl, bi-aromatic cap groups were prepared using ring closure metathesis reaction, and evaluated their HDAC inhibitory activities and anti-proliferative effects. Among prepared analogues, 11m and 11o have very strong HDAC enzymatic inhibition and showed the most potent growth inhibitory activity to five human tumor cell lines including PC-3, ACHN, NUGC-3, HCT-15, and MBA-MB-231 tumor cell lines. Compounds 11m and 11o also showed good tumor growth inhibition of MDA-MB-231 cells in in vivo xenograft model. Structure-activity relationship study using docking model explained the significance of hydrophobic aromatic cap groups for their in vitro activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号