首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although mutations in ras genes are thought to be important for the development of about 20% of human tumors, almost nothing is known about the way in which these mutations lead to cellular transformation. The known biochemical properties of the 21-kilodalton ras proteins suggest that they may behave as G proteins, regulating the proliferation of cells in response to growth factor stimulation of a receptor. Although the putative receptor(s) has not been identified, several lines of evidence, in particular the fact that rodent cell lines containing ras oncogenes produce transforming growth factor alpha, have suggested that the epidermal growth factor (EGF) receptor is involved in ras transformation. Here we show that murine fibroblasts with no EGF receptors can be transformed to a completely malignant phenotype with a mutated ras gene. It appears, therefore, that the EGF receptor is not required for ras-mediated transformation of these cells.  相似文献   

3.
Regulatory mechanisms for ras proteins.   总被引:12,自引:0,他引:12  
The proteins encoded by the ras proto-oncogenes play critical roles in normal cellular growth, differentiation and development in addition to their potential for malignant transformation. Several proteins that are involved in the control of the activity of p21ras have now been characterised. p120GAP stimulates the GTPase activity of p21ras and hence acts as a negative regulator of ras proteins. It may be controlled by tyrosine phosphorylation or association with tyrosine phosphorylated proteins. The neurofibromatosis type 1 (NF 1) gene also encodes a potential GTPase activating protein which is likely to be subject to a different control mechanism. Guanosine nucleotide exchange factors for p21ras have now been identified: these may be positive regulators of ras protein function. It appears that p21ras is subject to rapid regulation by several distinct mechanisms which are likely to vary in different cell types; the ras proteins are thereby able to act as very sensitive cellular monitors of the extracellular environment.  相似文献   

4.
In determining the mechanism of the chemokinetic action of the thiol protease inhibitor, E-64, in endothelial cell monolayers subjected to wounding, we synthesized succinyl-leucyl-agmatine (SLA), an analogue of E-64 that lacked the epoxy group and protease inhibitory effect. We observed that this analogue retained its chemokinetic effect on wounded endothelial cells. Its stimulatory action on endothelial cell polarization response to wounding was rapid and associated with directed cell migration. Furthermore, its effect on cellular polarization was blocked by protein kinase C (PKC) inhibitors and mimicked by pharmacologic agents that stimulated PKC activity. To determine if SLA's chemokinetic action was mediated by protein kinase C activation, we compared the effects of SLA and the tumor promoter phorbol myristate acetate (PMA) on the translocation of PKC activity in endothelial cells. We observed that both SLA and PMA induced the translocation of PKC activity from the cytosolic to the particulate fraction of the cells. We also observed that both SLA and PMA induced the phosphorylation of two proteins (Mr 23.4 and 36.5 kDa) in intact 32P-labeled cells. Thus, SLA stimulates the endothelial cell locomotor response to wounding by stimulating PKC activity.  相似文献   

5.
Both ornithine decarboxylase inhibition to deplete polyamines and cyclooxygenase inhibition diminish the migration response to injury of human airway epithelial cells in tissue culture monolayers by approximately 75%. Restoration of normal migration responses is achieved in the polyamine depleted system either by exogenous reconstitution of polyamines or the addition of prostaglandin E(2) (PGE(2)). However, only PGE(2) was able to restore migration in the cyclooxygenase-inhibited systems. Western blot for cyclooxygenase-2 and cytosolic phospholipase A(2) protein levels and ELISAs for PGE(2) secretion demonstrate dramatic increases over 24-48 h after monolayer wounding. These increases are completely abolished by polyamine depletion or cyclooxygenase inhibition. We conclude that polyamine inhibition decreases cellular migration in response to injury in airway epithelial cells at least in part through inhibiting normal PGE(2) production in response to injury. This may be brought about by decreases in cytosolic phospholipase A(2) and cyclooxygenase-2 protein levels.  相似文献   

6.
Restitution is a crucial event during the healing of superficial injury of the gastric mucosa involving epithelial cell sheet movement into the damaged area. We demonstrated that growth factors promote the restitution of human gastric epithelial cells. However, the intracellular signaling pathways that transmit extracellular cues as well as regulate basal and growth factor-stimulated gastric epithelial cell migration are still unclear. Herein, confluent human gastric epithelial cell monolayers (HGE-17) or primary cultures of gastric epithelial cells were wounded with a razor blade and the migration response was analyzed in presence or absence of TGFalpha or of pharmacological inhibitors of signaling proteins. Kinase activation profile analysis and phase-contrast microscopy were also performed in parallel. We report that ERK1/2 and Akt activities are rapidly stimulated following wounding of HGE-17 cells. Treatment of confluent HGE-17 cells or primary cultures of gastric epithelial cells with the phosphatidylinositol 3-kinase inhibitor LY294002, but not the MEK1 inhibitor, PD98059, significantly inhibits basal and TGFalpha-induced migration following wounding. Conversely, treatment of wounded HGE-17 cells with phosphatidylinositol(3,4,5)-triphosphate is sufficient to stimulate basal cell migration by 235%. In addition, pp60c-src kinase activity and tyrosine phosphorylation of epidermal growth factor receptors (EGFR) are also rapidly enhanced after wounding and pharmacological inhibition of both these activities strongly attenuates basal and TGFalpha-induced migration as well as Akt phosphorylation levels. In conclusion, the present results indicate that EGFR-dependent PI3K activation promotes restitution of wounded human gastric epithelial monolayers.  相似文献   

7.
Although oncogenic ras plays a pivotal role in neoplastic transformation, it triggers an anti-oncogenic defense mechanism known as premature senescence in normal cells. In this study, we investigated the induction of cellular responses by different expression levels of oncogenic ras in primary human fibroblasts. We found that a moderate, severalfold increase in ras expression promoted cell growth. Further elevation of ras expression initially enhanced proliferation but eventually induced p16INK4A expression and senescence. The induction of these opposing cellular responses by ras signals of different intensity was achieved through differential activation of the MAPK pathways that mediated these responses. Whereas moderate ras activities only stimulated the mitogenic MEK-ERK pathway, high intensity ras signals induced MEK and ERK to higher levels, leading to stimulation of the MKK3/6-p38 pathway, which had been shown previously to act downstream of Ras-MEK to trigger the senescence response. Thus, these studies have revealed a mechanism for the differential effects of ras on cell proliferation. Furthermore, moderate ras activity mediated transformation in cooperation with E6E7 and hTERT, suggesting that a moderate intensity ras signal can provide sufficient oncogenic activities for tumorigenesis. This result also implies that the ability of ras to promote proliferation and oncogenic transformation can be uncoupled with that to induce senescence in cell culture and that the development of tumors with relatively low ras activities may not need to acquire genetic alterations that bypass premature senescence.  相似文献   

8.
We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser(916), an autophosphorylation site. An increase in PKD1 phosphorylation at Ser(916) was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser(916) was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.  相似文献   

9.
Proteins of the ras family of oncogenes have been implicated in signal transduction pathways initiated by protein kinase C (PKC) and by tyrosine kinase oncogenes and receptors, but the role that ras plays in these diverse signalling systems is poorly defined. The activity of ras proteins has been shown to be controlled in part by a cellular protein, GAP (GTPase-activating protein), that negatively regulates p21c-ras by enhancing its intrinsic GTPase activity. Thus, overexpression of GAP provides a tool for determining the step(s) in signal transduction dependent on p21c-ras activity. In this paper, we report that overexpression of GAP blocks the phorbol ester (tetradecanoyl phorbol acetate [TPA])-induced activation of p42 mitogen-activated protein kinase (p42mapk), c-fos expression, and DNA synthesis. GAP overexpression did not block responses to serum or fluoroaluminate. Moreover, not all biochemical events elicited by TPA were affected by GAP overexpression, as increased glucose uptake and phosphorylation of MARCKS, a major PKC substrate, occurred normally. Reduction of GAP expression to near normal levels restored the ability of the cells to activate p42mapk in response to TPA. These findings suggest that ras and GAP together play a key role in a PKC-dependent signal transduction pathway which leads to p42mapk activation and cell proliferation.  相似文献   

10.
Ras genes are evolutionary conserved and codify for a monomeric G protein binding GTP (active form) or GDP (inactive form). The ras genes are ubiquitously expressed although mRNA analysis suggests different level expression in tissue. Mutations in each ras gene frequently were found in different tumors, suggesting their involvement in the development of specific neoplasia. These mutations lead to a constitutive active and potentially oncogenic protein that could cause a deregulation of cell cycle. Ras protein moderates cellular responses at several mitogens and/or differentiation factors and at external stimuli. These stimuli activate a series of signal transduction pathways that either can be independent or interconnected at different points. Recent observations begin to clarify the complex relationship between Ras activation, apoptosis, and cellular proliferation. A greater understanding of these processes would help to identify the factors directly responsible for cell cycle deregulation in several tumors, moreover it would help the design of specific therapeutic strategies, for the control on the proliferation of neoplastic cells. We summarize here current knowledge of ras genes family: structural and functional characteristics of Ras proteins and their links with cell cycle and cancer.  相似文献   

11.
TGF-beta signaling: a tale of two responses   总被引:10,自引:0,他引:10  
  相似文献   

12.
The transforming activities of p21 ras proteins have been determined by micro-injection of these proteins into NIH3T3 cells. In order to facilitate functional studies on the effect of ras proteins on malignant transformation and normal cellular growth, analysis has been made with three monoclonal antibodies (YA6-172, Y13-238 and Y13-259) as originally reported by Furth et al. (J virol 43 (1982) 294). Purified immunoglobulin of Y13-259 has the highest titer of binding to bacterially synthesized p21 ras proteins. Experimental analyses indicate that only Y13-259 antibody will neutralize the transforming activity of the co-injected bacterially synthesized ras protein and the neutralization effect was blocked by co-injection of excess ras protein. In addition, micro-injection of Y13-259 immunoglobulin into transformed NIH3T3 cells (obtained by DNA transfection of NIH3T3 cells with molecularly cloned ras gene) reversed their transformed phenotypes. These results indicate that both bacterially synthesized p21 ras proteins and the natural ras proteins produced in NIH3T3 cells were neutralized by Y13-259 antibody.  相似文献   

13.
Studies of the proteins Salmonella typhimurium synthesizes under conditions designed to more closely approximate the in vivo environment, i.e., in cell and tissue culture, are not easily interpreted because they have involved chemical inhibition of host cell protein synthesis during infection. The method which we have developed allows specific labeling of bacterial proteins without interfering with host cell metabolic activities by using a labeled lysine precursor which mammalian cells cannot utilize. We have resolved the labeled proteins using two-dimensional electrophoresis and autofluorography. We were able to detect 57 proteins synthesized by S. typhimurium during growth within a human intestinal epithelial cell line. Of the 57 proteins detected, 34 appear to be unique to the intracellular environment, i.e., they are not seen during growth of the bacteria in tissue culture medium alone. Current (and future) efforts are directed at organizing the 34 proteins into known stress response groups, determining the cellular locations of the proteins (outer or inner membrane, etc.), and comparing the pattern of proteins synthesized within an intestinal epithelial cell to the pattern synthesized during growth within other tissues.  相似文献   

14.
Nerve growth factor (NGF) is synthesized in cutaneous wound tissue, and its higher levels in the neonate may contribute to more efficient wound healing. We used in situ hybridization and immunohistochemistry to define NGF mRNA and protein expression in intact skin and following excision wounding in neonatal and adult rats. To determine whether NGF is associated with wound contractile fibroblasts (myofibroblasts), we also examined expression of !-smooth muscle actin (!-SMA) mRNA and protein, established markers for these cells. In intact skin, NGF mRNA and protein were present in vascular and arrector pili smooth muscle, hair follicle sheath cells, keratinocytes, and hypodermal fibroblasts. Neonatal adipocytes and Schwann cells also expressed NGF mRNA and protein, while adult adipocytes and Schwann cells displayed only NGF-ir. Following wounding, NGF mRNA expression was exuberant in these cell types, and increased similarly at both ages and appeared de novo in skeletal muscle cells. Additionally, both NGF mRNA and protein were present in macrophages and myofibroblasts, and expression in myofibroblasts was significantly greater in neonates. Wound myofibroblasts also expressed !-SMA. Surprisingly, after wounding !-SMA mRNA and protein were present in essentially all cells in which NGF mRNA was detected. We conclude that NGF expression is enhanced in many cell types after wounding, but greater NGF synthesis in neonates appears to be due to a more robust myofibroblast response. In addition, cell types which demonstrated NGF mRNA also expressed !-SMA, and staining for both markers increased following wounding, suggesting synthesis of both proteins is regulated in a coordinated fashion.  相似文献   

15.
Exosomes are nanometer-sized lipid vesicles released ubiquitously by cells, which have been shown to have a normal physiological role, as well as influence the tumor microenvironment and aid metastasis. Recent studies highlight the ability of exosomes to convey tumor-suppressive and oncogenic mRNAs, microRNAs, and proteins to a receiving cell, subsequently activating downstream signaling pathways and influencing cellular phenotype. Here, we show that radiation increases the abundance of exosomes released by glioblastoma cells and normal astrocytes. Exosomes derived from irradiated cells enhanced the migration of recipient cells, and their molecular profiling revealed an abundance of molecules related to signaling pathways important for cell migration. In particular, connective tissue growth factor (CTGF) mRNA and insulin-like growth factor binding protein 2 (IGFBP2) protein levels were elevated, and coculture of nonirradiated cells with exosomes isolated from irradiated cells increased CTGF protein expression in the recipient cells. Additionally, these exosomes enhanced the activation of neurotrophic tyrosine kinase receptor type 1 (TrkA), focal adhesion kinase, Paxillin, and proto-oncogene tyrosine-protein kinase Src (Src) in recipient cells, molecules involved in cell migration. Collectively, our data suggest that radiation influences exosome abundance, specifically alters their molecular composition, and on uptake, promotes a migratory phenotype.  相似文献   

16.
The ras proto-oncogene in mammalian cells encodes a 21-kilodalton guanosine triphosphate (GTP)-binding protein. This gene is frequently activated in human cancer. As one approach toward understanding the mechanisms of cellular transformation by ras, the function of this gene in lower eucaryotic organisms has been studied. In the yeast Saccharomyces cerevisiae, the RAS gene products serve as essential function by regulating cyclic adenosine monophosphate metabolism. Stimulation of adenylyl cyclase is dependent not only on RAS protein complexed to GTP, but also on the CDC25 and IRA gene products, which appear to control the RAS GTP-guanosine diphosphate cycle. Although analysis of RAS biochemistry in S. cerevisiae has identified mechanisms central to RAS action, RAS regulation of adenylyl cyclase appears to be strictly limited to this particular organism. In Schizosaccharomyces pombe, Dictyostelium discoideum, and Drosophila melanogaster, ras-encoded proteins are not involved with regulation of adenylyl cyclase, similar to what is observed in mammalian cells. However, the ras gene product in these other lower eucaryotes is clearly required for appropriate responses to extracellular signals such as mating factors and chemoattractants and for normal growth and development of the organism. The identification of other GTP-binding proteins in S. cerevisiae with distinct yet essential functions underscores the fundamental importance of G-protein regulatory processes in normal cell physiology.  相似文献   

17.
Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo.  相似文献   

18.
Insulin-like growth factor-1 (IGF-I) can associate with the extracellular matrix protein vitronectin (VN) via select IGF-binding proteins, and the resulting complex stimulates responses in a variety of cell types. As VN can also associate with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we hypothesized that the multimeric nature of VN could be exploited to deliver multiple growth factors to the cell surface. We report here that VN enhances bFGF but not EGF stimulated [(3)H]-leucine incorporation in the HaCAT keratinocyte cell line, with VN synergistically enhancing cell migration in response to both EGF and bFGF when presented as a VN-bound complex. Furthermore, the addition of EGF and/or bFGF to IGF-I:IGFBP-5:VN complexes significantly enhances both [(3)H]-leucine incorporation and migration of HaCAT cells above that induced by IGF:IGFBP-5:VN complexes alone. Indeed, similar responses are observed in primary cultures of human skin keratinocytes, highlighting the potential use of these novel complexes for a wide range of tissue repair applications.  相似文献   

19.
Vascular endothelial growth factor (VEGF)-induced endothelial cell migration is a key step in the angiogenic response and is mediated, in part, by an accelerated rate of focal adhesion complex assembly and disassembly. We investigated the signaling pathway by which VEGF regulates focal adhesion complex assembly by examining the signaling proteins involved. VEGF stimulated the tyrosine phosphorylation of the SH2 domain-containing signaling proteins NCK and CRK in human umbilical vein endothelial cells. The signaling pathways that couple the kinase insert domain-containing receptor to NCK and CRK is most likely mediated by another cellular protein, as NCK and CRK were tyrosine-phosphorylated in response to VEGF in cells expressing receptors mutated at each of several candidate SH2 domain-interacting cytosolic tyrosines. In the absence of VEGF treatment, NCK (but not CRK) associated with the p21 GTPase-activated kinase PAK. PAK catalytic activity was augmented after VEGF treatment; an association of PAK with 60- and 90-kDa tyrosine-phosphorylated proteins accompanied this. VEGF stimulated the recruitment of PAK to focal adhesions, and FAK immunoprecipitated with both NCK and PAK in VEGF-treated (but not untreated) human umbilical vein endothelial cells. Inhibition of NCK protein expression using antisense oligonucleotides led to the inhibition of both VEGF-induced focal adhesion assembly and VEGF-induced cell migration, demonstrating a necessary role of NCK in these cellular responses.  相似文献   

20.
Connective tissue growth factor (CTGF, CCN2) is overexpressed in lung fibroblasts isolated from patients with interstitial lung disease (ILD) and systemic sclerosis (SSc, scleroderma) and is considered to be a molecular marker of fibrosis. To understand the significance of elevated CTGF, we investigated the changes in lung fibroblast proteome in response to CTGF overexpression. Using 2-dimensional gel electrophoresis followed by in-gel proteolytic digestion and mass spectrometric analysis, we identified 13 proteins affected by CTGF. Several of the CTGF-induced proteins, such as pro-alpha (I) collagen and cytoskeletal proteins vinculin, moesin, and ezrin, are known to be elevated in pulmonary fibrosis, whereas 9 of 13 proteins have not been studied in pulmonary fibrosis and are, therefore, novel CTGF-responsive molecules that may have important roles in ILD. Our study demonstrates that 1 of the novel CTGF-induced proteins, IQ motif containing GTPase activating protein (IQGAP) 1, is elevated in lung fibroblasts isolated from scleroderma patients with ILD. IQGAP1 is a scaffold protein that plays a pivotal role in regulating migration of endothelial and epithelial cells. Scleroderma lung fibroblasts and normal lung fibroblasts treated with CTGF demonstrated increased rate of migration in a wound healing assay. Depletion of IQGAP1 expression by small interfering RNA inhibited CTGF-induced migration and MAPK ERK1/2 phosphorylation in lung fibroblasts. MAPK inhibitor U0126 decreased CTGF-induced cell migration and did not interfere with CTGF-induced IQGAP1 expression, suggesting that MAPK pathway is downstream of IQGAP1. These findings further implicate the importance of CTGF in lung tissue repair and fibrosis and propose that CTGF-induced migration of lung fibroblasts to the damaged tissue is mediated via IQGAP1 and MAPK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号