首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Anthropogenic noise associated with highway construction and operation can have individual‐ and population‐level consequences for wildlife (e.g., reduced densities, decreased reproductive success, behavioral changes). We used a before–after control–impact study design to examine the potential impacts of highway construction and traffic noise on endangered golden‐cheeked warblers (Setophaga chrysoparia; hereafter warbler) in urban Texas. We mapped and monitored warbler territories before (2009–2011), during (2012–2013), and after (2014) highway construction at three study sites: a treatment site exposed to highway construction and traffic noise, a control site exposed only to traffic noise, and a second control site exposed to neither highway construction or traffic noise. We measured noise levels at varying distances from the highway at sites exposed to construction and traffic noise. We examined how highway construction and traffic noise influenced warbler territory density, territory placement, productivity, and song characteristics. In addition, we conducted a playback experiment within study sites to evaluate acute behavioral responses to highway construction noises. Noise decreased with increasing distance from the highways. However, noise did not differ between the construction and traffic noise sites or across time. Warbler territory density increased over time at all study sites, and we found no differences in warbler territory placement, productivity, behavior, or song characteristics that we can attribute to highway construction or traffic noise. As such, we found no evidence to suggest that highway construction or traffic noise had a negative effect on warblers during our study. Because human population growth will require recurring improvements to transportation infrastructure, understanding wildlife responses to anthropogenic noise associated with the construction and operation of roads is essential for effective management and recovery of prioritized species.  相似文献   

2.
Urban habitats are noisy and constrain acoustic communication in birds. We analysed the effect of anthropogenic noise on the vocalization characteristics of House Wrens Troglodytes aedon at two sites with different noise levels (rural and urban). We measured in each song and song trill the frequency bandwidth, maximum amplitude, highest and minimum frequency, and trill rate. In noisy urban environments, there was a reduction in bandwidth and an increase in trill rate relative to quieter, rural environments. The whole song of birds from both populations increased in minimum frequency as noise increased, improving song transmission.  相似文献   

3.
Acoustic communication is fundamental in avian territory defence and mate attraction. In urban environments where sound transmissions are more likely to be masked by low-frequency anthropogenic noise, acoustic adaptations may be advantageous. However, minor modifications to a signal could affect its efficacy. While recent research has shown that there is divergence between songs from noisy and quiet areas, it is unknown whether these differences affect the response to the signal by its receivers. Here, we show that there is a difference in spectral aspects of rural and urban song in a common passerine, the great tit Parus major, at 20 sites across the UK. We also provide, to our knowledge, the first demonstration that such environmentally induced differences in song influence the response of male territory holders. Males from quiet territories exhibited a significantly stronger response when hearing song from another territory holder with low background noise than from those with high background noise. The opposite distinction in response intensity to homotypic versus heterotypic song was observed in males from noisy territories. This behavioural difference may intensify further signal divergence between urban and rural populations and raises important questions concerning signal evolution.  相似文献   

4.
Soundscapes pose both evolutionarily recent and long-standing sources of selection on acoustic communication. We currently know more about the impact of evolutionarily recent human-generated noise on communication than we do about how natural sounds such as pounding surf have shaped communication signals over evolutionary time. Based on signal detection theory, we hypothesized that acoustic phenotypes will vary with both anthropogenic and natural background noise levels and that similar mechanisms of cultural evolution and/or behavioral flexibility may underlie this variation. We studied song characteristics of white-crowned sparrows (Zonotrichia leucophrys nuttalli) across a noise gradient that includes both anthropogenic and natural sources of noise in San Francisco and Marin counties, California, USA. Both anthropogenic and natural soundscapes contain high amplitude low frequency noise (traffic or surf, respectively), so we predicted that birds would produce songs with higher minimum frequencies in areas with higher amplitude background noise to avoid auditory masking. We also anticipated that song minimum frequencies would be higher than the projected lower frequency limit of hearing based on site-specific masking profiles. Background noise was a strong predictor of song minimum frequency, both within a local noise gradient of three urban sites with the same song dialect and cultural evolutionary history, and across the regional noise gradient, which encompasses 11 urban and rural sites, several dialects, and several anthropogenic and natural sources of noise. Among rural sites alone, background noise tended to predict song minimum frequency, indicating that urban sites were not solely responsible for driving the regional pattern. These findings support the hypothesis that songs vary with local and regional soundscapes regardless of the source of noise. Song minimum frequency from five core study sites was also higher than the lower frequency limit of hearing at each site, further supporting the hypothesis that songs vary to transmit through noise in local soundscapes. Minimum frequencies leveled off at noisier sites, suggesting that minimum frequencies are constrained to an upper limit, possibly to retain the information content of wider bandwidths. We found evidence that site noise was a better predictor of song minimum frequency than territory noise in both anthropogenic and natural soundscapes, suggesting that cultural evolution rather than immediate behavioral flexibility is responsible for local song variation. Taken together, these results indicate that soundscapes shape song phenotype across both evolutionarily recent and long-standing soundscapes.  相似文献   

5.
Anthropogenic noise (≤ 3 kHz) can affect key features of birds’ acoustic communication via two different processes: (1) song‐learning, because songbirds need to hear themselves and other birds to crystallize their song, and (2) avoidance of song elements that overlap with anthropogenic noise. In this study we tested whether anthropogenic noise reduces the number of song elements in the repertoire of House Wren Troglodytes aedon, an urban species. Additionally, we tested whether the proportion of high‐frequency elements (i.e. elements where the minimum frequency is above 3 kHz) is related to anthropogenic noise levels, and how the frequencies and duration of shared elements between males change with different levels of anthropogenic noise. We recorded 29 House Wren males exposed to different anthropogenic noise levels (36.50–79.50 dB) during two consecutive breeding seasons from four locations. We recorded each male on 2 days during each season continuously for 50 min (we collected 104 h of recordings) and measured anthropogenic noise levels every 10 min inside each male territory during the recording period. In general, individuals inhabiting noisier territories had smaller repertoires. However, only in two locations with anthropogenic noise levels between 38.60 and 79.50 dB did males inhabiting noisier territories have smaller repertoires. In the other two locations with lower anthropogenic noise (36.50–66.50 dB), the anthropogenic noise inside each territory was not related to the repertoire size. Individuals inhabiting the noisiest location showed a tendency to include more high‐frequency elements in their songs. In 26% of the elements, the anthropogenic noise affected their frequency features. Our results showed that not all House Wrens inhabiting urban environments modify their songs at the highest level of organization (i.e. repertoire) to reduce the masking effect of anthropogenic noise on acoustic communication.  相似文献   

6.
Common bottlenose dolphins (Tursiops truncatus) use complex acoustic behaviours for communication, group cohesion and foraging. Ambient noise from natural and anthropogenic sources has implications for the acoustic behaviour of dolphins, and research shows that average ambient noise levels alter dolphin acoustic behaviour. However, when background noise levels are highly variable, the relationships between noise and acoustic behaviour over short time periods are likely important. This study investigates whether bottlenose dolphins altered the temporal and spectral qualities of their whistles in relation to the ambient noise present at the time the whistles were produced. Dolphin groups were recorded in Tampa Bay (western Florida) between 2008 and 2015. Six whistle parameters were analysed in spectrogram software (minimum frequency, maximum frequency, bandwidth, peak frequency, duration and number of inflection points) and ambient noise levels were calculated immediately prior to each whistle. Linear regression analysis indicated that the minimum, maximum and peak frequencies of whistles had significant positive relationships with the ambient noise levels present at the time of the whistles. These models suggested that for each 1 dB increase in ambient noise, minimum frequency increased by 121 Hz, maximum frequency increased by 108 Hz and peak frequency increased by between 122 and 144 Hz. As ambient noise is typically low frequency, this suggests that bottlenose dolphins increased whistle frequency in response to real-time noise levels to avoid masking. Future research to determine the fitness consequences of noise-induced changes in the communication behaviour of dolphins would be an important contribution to conservation efforts.  相似文献   

7.
Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog (Pseudacris regilla) is the most common vocal species of the Pacific Northwest and can occupy human‐dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time (“spatiotemporal communication”) over which a Pacific chorus frog vocalization could be heard revealed that in high‐noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space–time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species. Additionally, this model can be applied to other vocal taxonomic groups provided the necessary acoustic parameters are determined, including the frequency parameters and perception thresholds. Reduction in acoustic habitat by anthropogenic noise may emerge as a compounding environmental stressor for an already sensitive taxonomic group.  相似文献   

8.
Anthropogenic noise produced by human activities affects acoustic communication in animals living in urban habitats. We recorded the calling songs of the cicada Cryptotympana takasagona in the Kaohsiung metropolitan areas of southern Taiwan to investigate possible acoustic adaptations to anthropogenic noise. C. takasagona did not call more in noise gaps. Acoustic features (peak frequency, quartile 25%, quartile 50%, and quartile 75%) of calling songs significantly increased with ambient noise levels. C. takasagona shifted the energy distribution of calling songs to higher frequencies in the presence of higher noise levels. We suggest that the acoustic adaptation by which song frequencies increase with levels of anthropogenic noise in C. takasagona may result from a size-dependent calling strategy in which small-sized males call more in noise conditions or large-sized males adjust their song frequency by changing their abdominal cavities.  相似文献   

9.
ABSTRACT

We examined the extent to which acoustic noise in urban environments influences song characteristics and singing behaviour of Northern Cardinals Cardinalis cardinalis and American Robins Turdus migratorius. We predicted that, in response to loud noise, birds would improve signal transmission by (1) increasing singing rate and (2) adjusting song characteristics such as pitch and length. From May—July 2006, 42 cardinals and 53 robins were recorded in forests located within four acoustic environments in central Ohio: rural, residential, commercial, and highway. Following each recording, we measured ambient noise level and recorded information describing location, weather, habitat, and conspecific presence within 75 m. As predicted, frequency range was positively correlated with noise level for both species, but neither song length nor rate was related to noise level for either species. These data support the idea that anthropogenic noise influences avian singing behaviour and acts as a selective force in urban areas.  相似文献   

10.
Acoustic noise from automobile traffic impedes communication between signaling animals. To overcome the acoustic interference imposed by anthropogenic noise, species across taxa adjust their signaling behavior to increase signal saliency. As most of the spectral energy of anthropogenic noise is concentrated at low acoustic frequencies, species with lower frequency signals are expected to be more affected. Thus, species with low-frequency signals are under stronger pressure to adjust their signaling behaviors to avoid auditory masking than species with higher frequency signals. Similarly, for a species with multiple types of signals that differ in spectral characteristics, different signal types are expected to be differentially masked. We investigate how the different call types of a Japanese stream breeding treefrog (Buergeria japonica) are affected by automobile traffic noise. Male B. japonica produce two call types that differ in their spectral elements, a Type I call with lower dominant frequency and a Type II call with higher dominant frequency. In response to acoustic playbacks of traffic noise, B. japonica reduced the duration of their Type I calls, but not Type II calls. In addition, B. japonica increased the call effort of their Type I calls and decreased the call effort of their Type II calls. This result contrasts with prior studies in other taxa, which suggest that signalers may switch to higher frequency signal types in response to traffic noise. Furthermore, the increase in Type I call effort was only a short-term response to noise, while reduced Type II call effort persisted after the playbacks had ended. Overall, such differential effects on signal types suggest that some social functions will be disrupted more than others. By considering the effects of anthropogenic noise across multiple signal types, these results provide a more in-depth understanding of the behavioral impacts of anthropogenic noise within a species.  相似文献   

11.
The noise filter hypothesis predicts that species using higher sound frequencies should be more tolerant of noise pollution, because anthropogenic noise is more intense at low frequencies. Recent work analysed continental‐scale data on anthropogenic noise across the USA and found that passerine species inhabiting more noise‐polluted areas do not have higher peak song frequency but have more complex songs. However, this metric of song complexity is of ambiguous interpretation, because it can indicate either diverse syllables or a larger frequency bandwidth. In the latter case, the finding would support the noise filter hypothesis, because larger frequency bandwidths mean that more sound energy spreads to frequencies that are less masked by anthropogenic noise. We reanalysed how passerine song predicts exposure to noise using a more thorough dataset of acoustic song measurements, and showed that it is large frequency bandwidths, rather than diverse syllables, that predict the exposure of species to noise pollution. Given that larger bandwidths often encompass higher maximum frequencies, which are less masked by anthropogenic noise, our result suggests that tolerance to noise pollution might depend mostly on having the high‐frequency parts of song little masked by noise, thus preventing acoustic communication from going entirely unnoticed at long distances.  相似文献   

12.
The soundscape acts as a selective agent on organisms that use acoustic signals to communicate. A number of studies document variation in structure, amplitude, or timing of signal production in correspondence with environmental noise levels thus supporting the hypothesis that organisms are changing their signaling behaviors to avoid masking. The time scale at which organisms respond is of particular interest. Signal structure may evolve across generations through processes such as cultural or genetic transmission. Individuals may also change their behavior during development (ontogenetic change) or in real time (i.e., immediate flexibility). These are not mutually exclusive mechanisms, and all must be investigated to understand how organisms respond to selection pressures from the soundscape. Previous work on white‐crowned sparrows (Zonotrichia leucophrys) found that males holding territories in louder areas tend to sing higher frequency songs and that both noise levels and song frequency have increased over time (30 years) in urban areas. These previous findings suggest that songs are changing across generations; however, it is not known if this species also exhibits immediate flexibility. Here, we conducted an exploratory, observational study to ask whether males change the minimum frequency of their song in response to immediate changes in noise levels. We also ask whether males sing louder, as increased minimum frequency may be physiologically linked to producing sound at higher amplitudes, in response to immediate changes in environmental noise. We found that territorial males adjust song amplitude but not minimum frequency in response to changes in environmental noise levels. Our results suggest that males do not show immediate flexibility in song minimum frequency, although experimental manipulations are needed to test this hypothesis further. Our work highlights the need to investigate multiple mechanisms of adaptive response to soundscapes.  相似文献   

13.
Anthropogenic noise is prevalent across the globe and can exclude birds from otherwise suitable habitat and negatively influence fitness; however, the mechanisms responsible for species' responses to noise are not always clear. One effect of noise is a reduction in effective acoustic communication through acoustic masking, yet some urban songbirds may compensate for masking by noise through altering their songs. Whether this vocal flexibility accounts for species persistence in noisy areas is unknown. Here, we investigated the influence of noise on habitat use and vocal frequency in two suboscine flycatchers using a natural experiment that isolated effects of noise from confounding stimuli common to urban habitats. With increased noise exposure, grey flycatcher (Empidonax wrightii) occupancy declined, but vocal frequency did not change. By contrast, ash-throated flycatcher (Myiarchus cinerascens) occupancy was uninfluenced by noise, but individuals in areas with greater noise amplitudes vocalized at a higher frequency, although the increase (≈200 kHz) may only marginally improve communication and may represent a secondary effect from increased vocal amplitude. Even so, the different flycatcher behavioural responses suggest that signal change may help some species persist in noisy areas and prompt important questions regarding which species will cope with an increasingly noisy world.  相似文献   

14.
Anthropogenic noise, now common to many landscapes, can impair acoustic communication for many species, yet some birds compensate for masking by noise by altering their songs. The phylogenetic distribution of these noise-dependent signal adjustments is uncertain, and it is not known whether closely related species respond similarly to noise. Here, we investigated the influence of noise on habitat occupancy rates and vocal frequency in two congeneric vireos with similar song features. Noise exposure did not influence occupancy rates for either species, yet song features of both changed, albeit in different ways. With increases in noise levels, plumbeous vireos (Vireo plumbeus) sang shorter songs with higher minimum frequencies. By contrast, grey vireos (Vireo vicinior) sang longer songs with higher maximum frequencies. These findings support the notion that vocal plasticity may help some species occupy noisy areas, but because there were no commonalities among the signal changes exhibited by these closely related birds, it may be difficult to predict how diverse species may modify their signals in an increasingly noisy world.  相似文献   

15.
人类活动产生的噪声污染对动物和人类的影响正受到日益增多的关注。本文以雄性成年金色中仓鼠为实验动物模型,探讨了北京市主干道交通噪声对其焦虑行为及血象、应激生理的影响。分别以北京主干道噪声(80±10 dB SPL)暴露为实验组,实验室环境噪声(50±4 dB SPL)暴露为对照组,噪声处理动物1小时后进行旷场行为学测试,然后取血对比观测两组鼠血液学指标和应激响应、抗氧化酶活性等生理指标的变化。结果显示道路交通噪声没有导致仓鼠出现明显的焦虑行为;不过,实验组血小板数显著低于对照组(P = 0.044),其他血象指标两组间差异不显著;噪声对血清皮质醇,谷丙、谷草转氨酶影响不显著;实验组的血清谷胱甘肽过氧化物酶(GSH-Px)活性极显著低于对照组(P < 0.001),但超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、总抗氧化能力 (TAOC) 和丙二醛(MDA)水平两组间差异不显著;血清溶菌酶活性实验组降低较明显,接近显著水平(P = 0.0507)。我们的结果显示道路交通噪声胁迫导致了金色中仓鼠血象指标发生了变化,这提示北京市主干道交通噪声刺激对金色中仓鼠生理功能产生了一定的副作用。  相似文献   

16.
Automatic click detectors and full-bandwidth sound recorders are widely used in passive acoustic monitoring of small cetaceans. Detection of these signals depends on a variety of factors, including signal to noise ratio. Passive acoustic monitoring is often used to study impact of underwater noise on small cetaceans, but as detection probability is affected by changes in signal to noise ratio, variable noise levels may affect conclusions drawn from these experiments. Therefore, we examine how different detectors and filters perform in varying ocean noise conditions. C-PODs and full-bandwidth recorders (Wildlife Acoustics, SM2M+) were deployed at two stations in an environment with fluctuating ambient noise for 42 days. Noise level and harbour porpoise (Phocoena phocoena) click trains simultaneously recorded on both loggers were compared. Overall, we found that porpoise click detections by the algorithm used to analyse full-band recorder data (Pamguard) paralleled detections by the C-POD. However, Pamguard detected significantly more clicks than the C-POD. A decrease in detections was seen for both loggers with increasing noise in the band 20 –160 kHz, in particular for levels above 100 dB re 1μPa rms. We also found that the Pamguard detection function changed the least over varying noise conditions when compared to the C-POD detectors. This study sheds light on the fact that inference of animal presence/absence or density that are based on echolocation cues (here, Porpoise Positive Minutes) shall account for the acoustic environments where probability of detecting signals may be affected by variability in ambient noise levels.  相似文献   

17.
BackgroundRoad traffic noise is a prevalent and known health hazard. However, little is known yet about its effect on children’s cognition. We aimed to study the association between exposure to road traffic noise and the development of working memory and attention in primary school children, considering school-outdoor and school-indoor annual average noise levels and noise fluctuation characteristics, as well as home-outdoor noise exposure.Methods and findingsWe followed up a population-based sample of 2,680 children aged 7 to 10 years from 38 schools in Barcelona (Catalonia, Spain) between January 2012 to March 2013. Children underwent computerised cognitive tests 4 times (n = 10,112), for working memory (2-back task, detectability), complex working memory (3-back task, detectability), and inattentiveness (Attention Network Task, hit reaction time standard error, in milliseconds). Road traffic noise was measured indoors and outdoors at schools, at the start of the school year, using standard protocols to obtain A-weighted equivalent sound pressure levels, i.e., annual average levels scaled to human hearing, for the daytime (daytime LAeq, in dB). We also derived fluctuation indicators out of the measurements (noise intermittency ratio, %; and number of noise events) and obtained individual estimated indoor noise levels (LAeq) correcting for classroom orientation and classroom change between years. Home-outdoor noise exposure at home (Lden, i.e., EU indicator for the 24-hour annual average levels) was estimated using Barcelona’s noise map for year 2012, according to the European Noise Directive (2002). We used linear mixed models to evaluate the association between exposure to noise and cognitive development adjusting for age, sex, maternal education, socioeconomical vulnerability index at home, indoor or outdoor traffic-related air pollution (TRAP) for corresponding school models or outdoor nitrogen dioxide (NO2) for home models. Child and school were included as nested random effects.The median age (percentile 25, percentile 75) of children in visit 1 was 8.5 (7.8; 9.3) years, 49.9% were girls, and 50% of the schools were public. School-outdoor exposure to road traffic noise was associated with a slower development in working memory (2-back and 3-back) and greater inattentiveness over 1 year in children, both for the average noise level (e.g., ‒4.83 points [95% CI: ‒7.21, ‒2.45], p-value < 0.001, in 2-back detectability per 5 dB in street levels) and noise fluctuation (e.g., ‒4.38 [‒7.08, ‒1.67], p-value = 0.002, per 50 noise events at street level). Individual exposure to the road traffic average noise level in classrooms was only associated with inattentiveness (2.49 ms [0, 4.81], p-value = 0.050, per 5 dB), whereas indoor noise fluctuation was consistently associated with all outcomes. Home-outdoor noise exposure was not associated with the outcomes. Study limitations include a potential lack of generalizability (58% of mothers with university degree in our study versus 50% in the region) and the lack of past noise exposure assessment.ConclusionsWe observed that exposure to road traffic noise at school, but not at home, was associated with slower development of working memory, complex working memory, and attention in schoolchildren over 1 year. Associations with noise fluctuation indicators were more evident than with average noise levels in classrooms.

In a cohort study, Maria Foraster and colleagues study associations between exposure to road traffic noise at schools, and trajectories of working memory and inattentiveness among schoolchildren aged 7 to 10 years in Barcelona, Spain.  相似文献   

18.
Traffic noise likely reaches a wide range of species and populations throughout the world, but we still know relatively little about how it affects anti-predator behavior of populations. We tested for possible effects of traffic noise on responses to predator acoustic cues in Carolina chickadees (Poecile carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches (Sitta carolinensis) near 14 independent feeding stations in eastern Tennessee. We compared anti-predator calling and seed-taking behavior in response to playbacks of predator stimuli (screech owl calls) at sites naturally exposed to traffic noise and at sites that faced relatively little traffic noise. The screech owl call playback was designed to simulate the approach of this dangerous predator to a feeder being used by these small songbirds. We found that chickadees responded consistently to the owl stimuli across different levels of traffic noise. However, titmice, and nuthatches exhibited different behavioral responses to the predator stimulus, suggesting that traffic noise masked these low-frequency predator calls. Overall, chickadees and nuthatches showed the broadest anti-predator behavioral responses in comparison to titmice, corroborating earlier published work with an Indiana population. Finally, populations exposed to traffic noise overall seemed less able to detect predator cues potentially masked by that noise, and future work will need to assess likely seasonal variation in these responses as well as species-level variation in anti-predator responses in mixed-species groups.  相似文献   

19.
The function of bird song is closely linked to sexual selection through female choice and male–male competition, and thus variation in communication success is likely to have major fitness consequences for a singing male. A crucial constraint on signal transmission is imposed by background noise, which may include songs from other species. I investigated whether singing nightingales (Luscinia megarhynchos) avoid temporal overlap with the songs of other bird species in a playback experiment. I analysed the temporal song patterns of six males, each of which were exposed to songs of other species. The nightingales significantly avoided overlapping their songs with the playback songs, and started singing preferentially during the silent intervals between the heterospecific songs. This timing of song onset produced a greater variability in pause duration compared to the nightingales’ undisturbed solo singing. These findings suggest that birds adjust their song timing to avoid acoustic interference on short temporal scales, and thus are able to improve the efficiency of acoustic communication in complex sonic environments. Moreover, the results indicate that temporal song patterns can be affected by the songs of other species, and thus such influences should be taken into account when studying bird song in the field.  相似文献   

20.
When animals live in cities, they have to adjust their behaviour and life histories to novel environments. Noise pollution puts a severe constraint on vocal communication by interfering with the detection of acoustic signals. Recent studies show that city birds sing higher-frequency songs than their conspecifics in non-urban habitats. This has been interpreted as an adaptation to counteract masking by traffic noise. However, this notion is debated, for the observed frequency shifts seem to be less efficient at mitigating noise than singing louder, and it has been suggested that city birds might use particularly high-frequency song elements because they can be produced at higher amplitudes. Here, we present the first phonetogram for a songbird, which shows that frequency and amplitude are strongly positively correlated in the common blackbird (Turdus merula), a successful urban colonizer. Moreover, city blackbirds preferentially sang higher-frequency elements that can be produced at higher intensities and, at the same time, happen to be less masked in low-frequency traffic noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号