首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
Yarrowia lipolytica is a potentially useful host for heterologous protein production. To develop an efficient culture method for high cell density cultivation and heterologous gene expression of Y. lipolytica, the effects of medium components and their concentrations on the growth of Y. lipolytica have been investigated. Addition of yeast extract to the culture media was found to significantly reduce the long lag phase encountered when Y. lipolytica was cultivated in synthetic culture media containing high concentrations of glycerol. Therefore, by enriching with 0.3% yeast extract the synthetic culture medium containing 15% glycerol, we could cultivate Y. lipolytica up to 83 g/L dry cell weight in a batch culture. Furthermore, over 100 g/L and 88 units/mL of rice alpha-amylase activity were obtained in less than 50 h with a one-step feeding process in which a recombinant Y. lipolytica expressing rice alpha-amylase was cultivated in the 10% glycerol medium enriched with 0.3% yeast extract and fed only once with the concentrated feeding medium (60% glycerol). The easy cultivation of recombinant Y. lipolytica to a high cell density may strengthen its position as a host for heterologous protein production.  相似文献   

2.
The industrial yeast Yarrowia lipolytica secretes high amounts of an alkaline extracellular protease encoded by the XPR2 gene. The industrial use of the XPR2 promoter was however hindered by its complex regulation. We designed hybrid promoters, based on tandem copies of the XPR2 promoter UAS1 region. In contrast to native XPR2 promoter, these hybrid promoters were not repressed by the preferred carbon and nitrogen sources, nor by acidic conditions, and they did not require the presence of peptones in the culture medium. They exhibited a strong quasi-constitutive activity, similar when carried on either integrative or replicative plasmids. We used these hybrid promoters to direct the production of bovine prochymosin, using XPR2 secretion signals. The production of active chymosin was several fold higher than with previously available Y. lipolytica promoters (up to 160 mg/l). Integrative vectors based on the hybrid promoters, allowing the easy insertion of a heterologous gene and its expression or expression/secretion in Y. lipolytica, were designed. We also designed new Y. lipolytica recipient strains with good secreting abilities, able to grow on sucrose, and devoid of extracellular proteases. These new tools will add to the interest of Y. lipolytica as a host for heterologous protein production.  相似文献   

3.
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug–target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.  相似文献   

4.
Enhancement in oxygen uptake by high-cell-density cultivations has been achieved previously by expression of the bacterial hemoglobin gene from Vitreoscilla. The Vitreoscilla hemoglobin (VHb) gene was expressed in the yeast Yarrowia lipolytica to study the effect of expression in this commercially important yeast. The expression of VHb in this yeast was found to enhance growth, contrary to reported observations in wild-type Saccharomyces cerevisiae in which there was no significant growth enhancement. VHb-expressing Y. lipolytica exhibited higher specific growth rate, enhanced oxygen uptake rate, and higher respiratory activity. We report the beneficial effects of VHb expression on growth under microaerobic as well as under nonlimiting dissolved oxygen conditions. Earlier studies in Y. lipolytica have demonstrated inhibition of mycelia formation by respiratory inhibitors and poor nitrogen source, conditions poor for growth. VHb(+) Y. lipolytica cells were more efficient at forming mycelia, indicating better utilization of available oxygen as compared with the VHb(-) cells. Expression of VHb was also found to increase the levels of enzyme ribonuclease secreted into the medium, a property that may be beneficial for producing heterologous proteins in Y. lipolytica.  相似文献   

5.
ABSTRACT: BACKGROUND: Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS). Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. RESULTS: We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi alpha-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the alpha-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained alpha-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. CONCLUSIONS: We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a heterologous expression host and makes it possible to produce glycoproteins with homogeneously glycosylated N-glycans of the human high-mannose-type, which greatly broadens the application scope of these glycoproteins.  相似文献   

6.
In this study, a new surface display plasmid (pINA1317-YlCWP110) was constructed in Yarrowia lipolytica using C-terminal anchor domain of YlCWP1 from Y. lipolytica based on plasmid pINA1317, a pre-existing auto-cloning system for heterologous protein production in Y. lipolytica. When the genes encoding enhanced green fluorescent protein (EGFP) and haemolysin derived from the bacterium Vibrio harveyi were cloned into the newly constructed surface display plasmid, respectively, and expressed in cells of Y. lipolytica, we found that the target proteins were successfully displayed on the yeast cells and 100% of the yeast cell had anchoring target proteins. It was also shown that the yeast cells displaying haemolysin had haemolytic activity towards erythrocytes from flounder, indicating that the fusion protein remained functional. Therefore, the newly constructed surface display plasmid will have many applications in different fields such as in immobilized biocatalyst, bioconversion, bioremediation, live vaccine development and ultra-high-throughput screening for the identification of novel biocatalysts because it has many unique characteristics. To our knowledge, this work constitutes the first report of a surface display expression system in Y. lipolytica.  相似文献   

7.
萜类化合物是一类广泛存在于植物中的天然产物,其在食品、药品和化工等多个领域中均有广泛的用途,市场潜力巨大。因此,开发生产萜类化合物等植物天然产物可再生的微生物资源来补充甚至代替原有稀少和珍贵的植物资源,具有重要的理论意义和潜在的应用价值。解脂耶氏酵母是目前使用最广泛的非常规酵母底盘细胞之一。近年来,利用代谢工程及合成生物学技术在解脂耶氏酵母底盘细胞中重构与优化萜类化合物的合成途径以实现目标代谢产物的高效合成,已经成为一项研究热点。本文系统总结了有关利用解脂耶氏酵母作为底盘细胞异源生产植物萜类化合物的具体实例和最新进展,包括所涉及的宿主菌株、关键酶、代谢途径及改造策略等,并在最后对该领域的未来发展方向进行了展望。  相似文献   

8.
Non-conventional yeasts as hosts for heterologous protein production.   总被引:4,自引:0,他引:4  
Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae.  相似文献   

9.
10.
Lipases are industrially useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial applications, such as in food, chemical, pharmaceutical, and detergent industries, there are still substantial current interests in developing new microbial lipases, specifically those functioning in abnormal conditions. We screened 17 lipase-producing yeast strains, which were prescreened for substrate specificity of lipase from more than 500 yeast strains from the Agricultural Research Service Culture Collection (Peoria, IL, U.S.A.), and selected Yarrowia lipolytica NRRL Y-2178 as a best lipase producer. This report presents new finding and optimal production of a novel extracellular alkaline lipase from Y. lipolytica NRRL Y-2178. Optimal c ulture conditions f orlipase production by Y. lipolytica NRRL Y-2178 were 72 h incubation time, 27.5 degrees C, pH 9.0. Glycerol and glucose were efficiently used as the most efficient carbon sources, and a combination of yeast extract and peptone was a good nitrogen source for lipase production by Y. lipolytica NRRL Y-2178. These results suggested that Y. lipolytica NRRL Y-2178 showsgood industrial potential as a new alkaline lipase producer.  相似文献   

11.
The dimorphic yeast, Yarrowia lipolytica, has been developed as a useful expression/secretion system for heterologous proteins such as chymosin and tissue plasminogen activator. To further develop this expression system, we have cloned the gene (PYK) encoding the highly expressed glycolytic enzyme, pyruvate kinase (PYK). Genomic clones were selected by their specific hybridization to synthetic oligodeoxyribonucleotide probes based on regions of the enzyme that were conserved through evolution. The clones identified by hybridization contained overlapping DNA inserts. We have confirmed the identity of the cloned gene based on two criteria: (1) the nucleotide sequence of the proposed PYK gene predicts a protein that is highly homologous to the corresponding Saccharomyces cerevisiae enzyme, and (2) PYK-specific activity was increased twofold when wild-type Y. lipolytica strains were transformed with the isolated DNA. Interestingly, we found that the open reading frame of the Y. lipolytica PYK gene was interrupted by an intron. This represents the first report of an intron in a Y. lipolytica gene.  相似文献   

12.
Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as "generally recognized as safe." Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man(3)GlcNAc(2) structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man(5)GlcNAc(2) and GlcMan(5)GlcNAc(2) glycans, and to a lesser extent with Glc(2)Man(5)GlcNAc(2) glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man(3)GlcNAc(2) structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

13.
The gamma- and delta-lactones of less than 12 carbons constitute a group of compounds of great interest to the flavour industry. It is possible to produce some of these lactones through biotechnology. For instance, gamma-decalactone can be obtained by biotransformation of methyl ricinoleate. Among the organisms used for this bioproduction, Yarrowia lipolytica is a yeast of choice. It is well adapted to growth on hydrophobic substrates, thanks to its efficient and numerous lipases, cytochrome P450, acyl-CoA oxidases and its ability to produce biosurfactants. Furthermore, genetic tools have been developed for its study. This review deals with the production of lactones by Y. lipolytica with special emphasis on the biotransformation of methyl ricinoleate to gamma-decalactone. When appropriate, information from the lipid metabolism of other yeast species is presented.  相似文献   

14.
The obligate aerobic yeast Yarrowia lipolytica is introduced as a powerful new model for the structural and functional analysis of mitochondrial complex I. A brief introduction into the biology and the genetics of this nonconventional yeast is given and the relevant genetic tools that have been developed in recent years are summarized. The respiratory chain of Y. lipolytica contains complexes I-IV, one "alternative" NADH-dehydrogenase (NDH2) and a non-heme alternative oxidase (AOX). Because the NADH binding site of NDH2 faces the mitochondrial intermembrane space rather than the matrix, complex I is an essential enzyme in Y. lipolytica. Nevertheless, complex I deletion strains could be generated by attaching the targeting sequence of a matrix protein, thereby redirecting NDH2 to the matrix side. Deletion strains for several complex I subunits have been constructed that can be complemented by shuttle plasmids carrying the deleted gene. Attachment of a hexa-histidine tag to the NUGM (30 kDa) subunit allows fast and efficient purification of complex I from Y. lipolytica by affinity-chromatography. The purified complex has lost most of its NADH:ubiquinone oxidoreductase activity, but is almost fully reactivated by adding 400-500 molecules of phosphatidylcholine per complex I. The established set of genetic tools has proven useful for the site-directed mutagenesis of individual subunits of Y. lipolytica complex I. Characterization of a number of mutations already allowed for the identification of several functionally important amino acids, demonstrating the usefulness of this approach.  相似文献   

15.
ABSTRACT: BACKGROUND: Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. RESULTS: For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems.Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system.Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. CONCLUSIONS: Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes.  相似文献   

16.
Papouskova K  Sychrova H 《FEBS letters》2006,580(8):1971-1976
The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.  相似文献   

17.
Allergies affect almost 25% of the population in industrialized countries. Alternaria alternata is known to be a significant source of aeroallergens and sensitization to this mold is a risk factor for the development of wheezing, asthma, and atopic dermatitis. Diagnosis and treatment of allergies requires the production of large amounts of pure and well defined protein. Yarrowia lipolytica, a non-pathogenic ascomycete able to secrete high levels of enzymes that can grow in inexpensive substrates, has been considered a useful host for heterologous gene expression. In the present work, we have developed two vectors for expressing Alt a 1, the most relevant A. alternata allergen, in Y. lipolytica. One vector is autosomal and one is integrative. With both systems, rAlt a 1 was secreted into the culture medium. The immunological characteristics of the purified recombinant allergen were determined by IgE-blot using sera from 42 A. alternata-allergic patients. We have carried out ELISA-inhibition experiments using sera from four patients to compare the IgE-binding capacity of natural and recombinant allergens. Our results show that Y. lipolytica is able to produce a recombinant Alt a 1 which is immunochemically equivalent to the natural counterpart and could be used for immunotherapy and diagnostics.  相似文献   

18.
Mitochondrial proton-translocating NADH-dehydrogenase (complex I) is one of the largest and most complicated membrane bound protein complexes. Despite its central role in eukaryotic oxidative phosphorylation and its involvement in a broad range of human disorders, little is known about its structure and function. Therefore, we have started to use the powerful genetic tools available for the strictly aerobic yeast Yarrowia lipolytica to study this respiratory chain enzyme. To establish Y. lipolytica as a model system for complex I, we purified and characterized the multisubunit enzyme from Y lipolytica and sequenced the nuclear genes coding for the seven central subunits of its peripheral part. Complex I from Y lipolytica is quite stable and could be isolated in a highly pure and monodisperse state. One binuclear and four tetranuclear iron-sulfur clusters, including N5, which was previously known only from mammalian mitochondria, were detected by EPR spectroscopy. Initial structural analysis by single particle electron microscopy in negative stain and ice shows complex I from Y. lipolytica as an L-shaped particle that does not exhibit a thin stalk between the peripheral and the membrane parts that has been observed in other systems.  相似文献   

19.
解脂耶氏酵母(Yarrowia lipolytica)是非常规酵母中具代表性的一种,它底物广泛,尤其能利用有机酸(柠檬酸、异柠檬酸),蛋白类(蛋白酶、脂肪酸、酯酶、磷酸酶、α-甘露糖苷酶、RNase)。烷烃类廉价物质作为底物分泌大量的代谢产物,自上世纪40年代被发现以来,越来越受到研究者的重视,并于上世纪90年代被开发成为一种新的酵母表达系统,用于42种异源蛋白的高效表达。综述了解脂耶氏酵母表达系统及其特点,有利于研究者从转录和翻译的水平研究异源蛋白在此菌中的表达分泌路径以及寻找到调控型启动子。  相似文献   

20.
Polyketides are a diverse class of molecules sought after for their valuable properties, including as potential pharmaceuticals. Previously, we demonstrated that the oleaginous yeast Yarrowia lipolytica is an optimal host for production of the simple polyketide, triacetic acid lactone (TAL). We here expand the capacities of this host by overcoming previous media challenges and enabling production of more complex polyketides. Specifically, we employ a β-oxidation related strategy to improve polyketide production directly from defined media. Beyond TAL production, we establish biosynthesis of the 4-coumaroyl-CoA derived polyketides: naringenin, resveratrol, and bisdemethoxycurcumin, as well as the diketide intermediate, (E)-5-(4-hydroxyphenyl)-3-oxopent-4-enoic acid. In this background, we enable high-level de novo production of naringenin through import of both a heterologous pathway and a mutant Y. lipolytica allele. In doing so, we generated an averaged maximum titer of 898 mg/L naringenin, the highest titer reported to date in any host. These results demonstrate that Y. lipolytica is an ideal polyketide production host for more complex 4-coumaroyl-CoA derived products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号