首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Muscarinic acetylcholine receptors purified from porcine cerebrum were phosphorylated by protein kinase C purified from the same tissue. More than 1 mol of phosphate was incorporated per mole of receptor, with both serine and threonine residues being phosphorylated. Neither the degree nor the rate of the phosphorylation was affected by the presence or absence of acetylcholine. GTP-sensitive high-affinity binding with acetylcholine was observed for muscarinic receptors reconstituted with GTP-binding proteins (Gi or Go), irrespective of whether muscarinic receptors or the GTP-binding proteins had been phosphorylated by protein kinase C or not. This indicates that the interaction between purified muscarinic receptors and purified GTP-binding proteins in vitro is not affected by their phosphorylation.  相似文献   

2.
Abstract: Annexin 2 phosphorylated in vitro by protein kinase C has been shown to restore partially catecholamine secretion in streptolysin O-permeabilized chromaffin cells depleted of their protein kinase C activity. This result suggested a phosphorylation of annexin 2 in stimulated cells. Nicotine stimulation induced an increase of 32P incorporation in annexin 2 heavy chain concomitant with catecholamine release. This incorporation results from phosphorylation by protein kinase C because (a) serine was the only phosphorylated residue, (b) 32P incorporation was inhibited by the protein kinase inhibitors H7, GF 109203X, and staurosporine, and (c) activators of this enzyme, 12- O -tetradecanoylphorbol 13-acetate and 1,2-dioctanoylglycerate, increased the incorporation of radioactivity. The phosphorylated heavy chain had an electrophoretic mobility lower than that of the unmodified one, thus allowing determination of the fraction of phosphorylated protein. In the resting state, a significant fraction of annexin 2 heavy chain was phosphorylated, and nicotine stimulation resulted in an activation of both phosphorylation and dephosphorylation. Phosphorylation was largely increased in the presence of okadaic acid, indicating the involvement of type 1 and 2A phosphatases.  相似文献   

3.
Hippocampal long-term potentiation (LTP) is a persistent increase in the efficacy of synaptic transmission, which is widely thought to be a cellular mechanism that could contribute to learning and memory. Studies on the biochemical mechanisms underlying LTP suggest the involvement of protein kinases in both LTP induction and maintenance. In this report we describe an LTP-associated increase in the phosphorylation in vitro of a 17-kDa protein kinase C (PKC) substrate protein, which we have termed P17, in homogenates from the CA1 region of rat hippocampal slices. This LTP-associated increase in phosphorylation was expressed independent of significant levels of free Ca2+, as phosphorylation reactions were performed in the presence of 500 microM EGTA. The increased phosphorylation of P17 was substantially inhibited by PKC(19-36), a selective inhibitor of PKC. These data support the model that persistent PKC activation contributes to the maintenance of LTP and implicate P17 as a potential target for PKC in the CA1 region of the hippocampus.  相似文献   

4.
Abstract: The phosphorylation state of cp20, a low molecular weight membrane-associated GTP-binding protein, was previously shown to increase two- to threefold 24 h after associative conditioning. Here, cp20 is shown to be phosphorylated by protein kinase C (PKC) in vitro. Pronounced differences in activity were observed with the three major isoforms of PKC, whereas casein kinase, calcium/calmodulin-dependent protein kinase II, and cyclic AMP-dependent protein kinase produced no detectable phosphorylation of cp20. Phosphorylation of cp20 had no effect on its GTPase or GTP-binding activity but caused a translocation of cp20 from cytosol to the nuclei/mitochondrial particulate fraction. These results suggest that the increase in phosphorylation of cp20 after conditioning may be due to PKC.  相似文献   

5.
We have identified and partially purified an acidic, heat-stable, noncalmodulin protein from bovine brain cytosol that stimulates Ca2+-dependent phosphorylation of an Mr 90K substrate in crude rat brain synaptic membranes. We show that this modulator of phosphorylation (MOP) enhances Ca2+- and phospholipid-dependent protein kinase (C kinase) phosphorylation of this 90K substrate. The 90K substrate is a higher Mr form of an 87K substrate that is a major C kinase substrate in rat brain. The Ca2+-dependent phosphorylation of both substrates is inhibited by the Ca2+-binding proteins S-100 and calmodulin. Both substrates yield phosphopeptide fragments of Mr 9K and 13K after limited proteolysis with V8 protease. Two-dimensional polyacrylamide gel electrophoresis reveals that they have similar acidic isoelectric points (pI 5.0). MOP enhances Ca2+-dependent phosphorylation of the 90K substrate whereas the phosphorylation of 87K is diminished. This reciprocal relationship suggests that the mobility of the 87K substrate in sodium dodecyl sulfate-polyacrylamide gels is decreased to 90K with increasing phosphorylation. MOP may be a novel protein modulator of C kinase-mediated phosphorylation in the nervous system.  相似文献   

6.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

7.
Abstract: Mitogen-activated protein kinase (MAP kinase) was activated by stimulation of glutamate receptors in cultured rat hippocampal neurons. Ten micromolar glutamate maximally stimulated MAP kinase activity, which peaked during 10 min and decreased to the basal level within 30 min. Experiments using glutamate receptor agonists and antagonists revealed that glutamate stimulated MAP kinase through NMDA and metabotropic glutamate receptors but not through non-NMDA receptors. Glutamate and its receptor agonists had no apparent effect on MAP kinase activation in cultured cortical astrocytes. Addition of calphostin C, a protein kinase C (PKC) inhibitor, or down-regulation of PKC activity partly abolished the stimulatory effect by glutamate, but the MAP kinase activation by treatment with ionomycin, a Ca2+ ionophore, remained intact. Lavendustin A, a tyrosine kinase inhibitor, was without effect. In experiments with 32P-labeled hippocampal neurons, MAP kinase activation by glutamate was associated with phosphorylation of the tyrosine residue located on MAP kinase. However, phosphorylation of Raf-1, the c- raf protooncogene product, was not stimulated by treatment with glutamate. Our observations suggest that MAP kinase activation through glutamate receptors in hippocampal neurons is mediated by both the PKC-dependent and the Ca2+-dependent pathways and that the activation of Raf-1 is not involved.  相似文献   

8.
Abstract: 4-Aminopyridine evokes repetitive firing of synaptosomes and exocytosis of glutamate by inhibiting a dendrotoxin-sensitive K+ channel responsible for stabilizing the membrane potential. We have shown previously that activation of protein kinase C (PKC) by high concentrations of phorbol ester (4β-phorbol dibutyrate) can increase release by inhibiting a dendrotoxin-insensitive ion channel, whereas the metabotropic glutamate receptor (mGluR) agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate [(1 S ,3 R )-ACPD] mimics the action of 4β-phorbol dibutyrate, but only in the presence of 2 µ M arachidonic acid (AA). In this article, we investigate the role of AA. AA plus (1 S ,3 R )-ACPD is without effect on KCl-induced glutamate exocytosis, indicating that the regulatory pathway acts upstream of the release-coupled Ca2+ channel or Ca2+-secretion coupling. Diacylglycerol concentrations are greatly enhanced by (1 S ,3 R )-ACPD alone, independently of AA, indicating that AA acts downstream of phospholipase C. Myristoylated alanine-rich C kinase substrate (MARCKS) is the major presynaptic substrate for PKC. mGluR activation by (1 S ,3 R )-ACPD enhances phosphorylation of MARCKS, but only in the presence of AA. These results strongly suggest that AA acts on presynaptic PKC synergistically with diacylglycerol generated by the phospholipase-coupled mGluR, consistent with the known behaviour of certain purified PKC isoforms. The magnitude of the effects observed in a population of rat cerebrocortical synaptosomes suggests that this is a major mechanism regulating the release of the brain's dominant excitatory neurotransmitter and supports the concept that AA, or a related compound with a similar locus of action, may in certain circumstances play a role in synaptic plasticity.  相似文献   

9.
Abstract : We have shown previously that phosphate groups on the amino-terminal head domain region of the middle molecular mass subunit of neurofilament proteins (NF-M) are added by second messenger-dependent protein kinases. Here, we have identified Ser23 as a specific protein kinase A phosphorylation site on the native NF-M subunit and on two synthetic peptides, S1 (14RRVPTETRSSF24) and S2 (21RSSFSRVSGSPSSGFRSQSWS41), localized within the amino-terminal head domain region. Ser23 was identified as a phosphorylation site on the 32P-labeled α-chymotryptic peptide that carried >80% of the 32P-phosphates incorporated into the NF-M subunit by protein kinase A. The synthetic peptides S1 and S2 were phosphorylated 18 and two times more efficiently by protein kinase A than protein kinase C, respectively. Neither of the peptides was phosphorylated by casein kinase II. The sequence analyses of the chemically modified phosphorylated serine residues showed that Ser23 was the major site of phosphorylation for protein kinase A on both S1 and S2 peptides. Low levels of incorporation of 32P-phosphates into Ser22, Ser28, and Ser32 by protein kinase A were also observed. Protein kinase C incorporated 32P-phosphates into Ser22, Ser23, Ser25, Ser28, Ser32, and a threonine residue, but none of these sites could be assigned as a major site of phosphorylation. Analyses of the phosphorylated synthetic peptides by liquid chromatography-tandem mass spectrometry also showed that protein kinase A phosphorylated only one site on peptide S1 and that ions with up to four phosphates were detected on peptide S2. Analysis of the data from the tandem ion trap mass spectrometry by using the computer program PEPSEARCH did not unequivocally identify the specific sites of phosphorylation on these serine-rich peptides. Our data suggest that Ser23 is a major protein kinase A-specific phosphorylation site on the amino-terminal head region of the NF-M subunit. Phosphorylation of Ser23 on the NF-M subunit by protein kinase A may play a regulatory role in neurofilament assembly and/or the organization of neurofilaments in the axon.  相似文献   

10.
Abstract: One important aspect of synaptic plasticity is that transient stimulation of neuronal cell surface receptors can lead to long-lasting biochemical and physiological effects in neurons. In long-term potentiation (LTP), generation of autonomously active protein kinase C (PKC) is one biochemical effect persisting beyond the NMDA receptor activation that triggers plasticity. We previously observed that the expression of early LTP is associated with a phosphatase-reversible alteration in PKC immunoreactivity, suggesting that autophosphorylation of PKC might be elevated in LTP. In the present studies we tested the hypothesis that PKC phosphorylation is persistently increased in the early maintenance of LTP. We generated an antiserum that selectively recognizes the α and βII isoforms of PKC autophosphorylated in the C-terminal domain. Using western blotting with this antiserum we observed an NMDA receptor-mediated increase in phosphorylation of PKC 1 h after LTP was induced. How is the increased phosphorylation maintained in the cell in the face of ongoing phosphatase activity? We observed that dephosphorylation of PKC in vitro requires the presence of cofactors normally serving to activate PKC, i.e., Ca2+, phosphatidylserine, and diacylglycerol. Based on these observations and computer modeling of the three-dimensional structure of the PKC catalytic core, we propose a “protected site” model of PKC autophosphorylation, whereby the conformation of PKC regulates accessibility of the phosphates to phosphatase. Although we have proposed the protected site model based on our studies of PKC phosphorylation in LTP, phosphorylation of protected sites might be a general biochemical mechanism for the generation of stable, long-lasting physiologic changes.  相似文献   

11.
Abstract: NMDA receptors and Ca2+/calmodulin-dependent kinase II (CaMKII) have been reported to be highly concentrated in the postsynaptic density (PSD). Although the possibility that CaMKII in PSD might be associated with specific proteins has been put forward, the protein or proteins determining the targeting of the kinase in PSD have not yet been identified. Here we report that CaMKII binds to NR2A and NR2B subunits of NMDA receptors in PSD isolated from cortex and hippocampus. The association of NMDA receptor subunits and CaMKII was assessed by immunoprecipitating PSD proteins with antibodies specific for NR2A/B and CaMKII: CaMKII coprecipitated with NR2A/B and NR1 but not with other glutamate ionotropic receptor subunits, such as GluR1 and GluR2-3. A direct association between CaMKII and NR2A/B subunits was further confirmed by overlay experiments using either 32P-autophosphorylated CaMKII or 32P-NR2A/B and by evaluating the formation of a CaMKII-NR2A/B complex by means of the cross-linker disuccimidyl suberate. These data demonstrate an association between the NMDA receptor complex and CaMKII in the postsynaptic compartment, suggesting that this colocalization may be relevant for synaptic plasticity.  相似文献   

12.
The mechanism by which protein kinase C (PKC) activates transmitter release from guinea pig cerebrocortical synaptosomes was investigated by employing parallel fluorescent assays of glutamate release, cytoplasmic free Ca2+, and plasma membrane potential. 4 beta-Phorbol dibutyrate (4 beta-PDBu) enhances the Ca(2+)-dependent, 4-aminopyridine (4AP)-evoked release of glutamate from synaptosomes, the 4AP-evoked elevation of cytoplasmic free Ca2+, and the 4AP-evoked depolarization of the plasma membrane. 4 beta-PDBu itself causes a slow depolarization, which may underlie the small effect of 4 beta-PDBu on spontaneous, KCl-evoked, and Ca(2+)-independent/4AP-evoked glutamate release. Because 4AP (but not KCl) generates spontaneous, tetrodotoxin-sensitive action potentials in synaptosomes, a major locus of presynaptic PKC action is to enhance these action potentials, perhaps by inhibiting delayed rectifier K+ channels.  相似文献   

13.
Abstract: The injection of phorbol esters into the eyes of dark-adapted teleost fish can mimic light effects in the retina and induces corresponding synaptic plasticity of horizontal cells (HCs). It is therefore very likely that protein kinase C (PKC) mediates light-induced synaptic plasticity. In the present study, we investigated the distribution of PKC, the phorbol ester receptor, in isolated HCs and in the whole retina by using tritiated phorbol 12,13-dibutyrate ([3H]PDBu). The binding characteristics analyzed for HC homogenates and retinal homogenates revealed that [3H]PDBu binding is time dependent, specific, saturable, and reversible. Binding sites in HCs displayed a dissociation constant of 11.5 n M and a total number of 2.8 pmol/mg of protein. Autoradiography revealed that [3H]PDBu labeling is present in all retinal layers, including HCs, where it is associated with the somata. Furthermore, the treatment with PDBu strongly affected the endogenous phosphorylation of several membrane, cytosolic, and HC proteins and led to PKC activation as measured by H1 histone phosphorylation. In HCs, the treatment with PDBu in particular affected the amount of 32P incorporated into a group of phosphoproteins (68, 56/58, 47, 28, and 15 kDa) that were recently shown to be affected by light adaptation. These proteins might therefore be considered as important components of the observed morphological and physiological synaptic plasticity of HCs in the course of light adaptation.  相似文献   

14.
Abstract: GABA and the GABAB receptor agonist (−)-baclofen inhibited 4-aminopyridine (4AP)- and KCl-evoked, Ca2+-dependent glutamate release from rat cerebrocortical synaptosomes. The GABAB receptor antagonist CGP 35348, prevented this inhibition of glutamate release, but phaclofen had no effect. (−)-Baclofen-mediated inhibition of glutamate release was insensitive to 2 µg/ml pertussis toxin. As determined by examining the mechanism of GABAB receptor modulation of glutamate release, (−)-baclofen caused a significant reduction in 4AP-evoked Ca2+ influx into synaptosomes. The agonist did not alter the resting synaptosomal membrane potential or 4AP-mediated depolarization; thus, the inhibition of Ca2+ influx could not be attributed to GABAB receptor activation causing a decrease in synaptosomal excitability. Ionomycin-mediated glutamate release was not affected by (−)-baclofen, indicating that GABAB receptors in this preparation are not coupled directly to the exocytotic machinery. Instead, the data invoke a direct coupling of GABAB receptors to voltage-dependent Ca2+ channels linked to glutamate release. This coupling was subject to regulation by protein kinase C (PKC), because (−)-baclofen-mediated inhibition of 4AP-evoked glutamate release was reversed when PKC was stimulated with phorbol ester. This may therefore represent a mechanism by which inhibitory and facilitatory presynaptic receptor inputs interplay to fine-tune transmitter release.  相似文献   

15.
Abstract: Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286 generates Ca2+-independent activity. As an initial step toward understanding CaMKII inactivation, protein phosphatase classes (PP1, PP2A, PP2B, or PP2C) responsible for dephosphorylation of Thr286 in rat forebrain subcellular fractions were identified using phosphatase inhibitors/activators, by fractionation using ion exchange chromatography and by immunoblotting. PP2A-like enzymes account for >70% of activity toward exogenous soluble Thr286-autophosphorylated CaMKII in crude cytosol, membrane, and cytoskeletal extracts; PP1 and PP2C account for the remaining activity. CaMKII is present in particulate fractions, specifically associated with postsynaptic densities (PSDs); each protein phosphatase is also present in isolated PSDs, but only PP1 is enriched during PSD isolation. When isolated PSDs dephosphorylated exogenous soluble Thr286-autophosphorylated CaMKII, PP2A again made the major contribution. However, CaMKII endogenous to PSDs (32P autophosphorylated in the presence of Ca2+/calmodulin) was predominantly dephosphorylated by PP1. In addition, dephosphorylation of soluble and PSD-associated CaMKII in whole forebrain extracts was catalyzed predominantly by PP2A and PP1, respectively. Thus, soluble and PSD-associated forms of CaMKII appear to be dephosphorylated by distinct enzymes, suggesting that Ca2+-independent activity of CaMKII is differentially regulated by protein phosphatases in distinct subcellular compartments.  相似文献   

16.
Abstract: Increased intracellular adenosine 3':5'-monophosphate (cAMP) levels and activation of cAMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) in vivo were correlated in mouse neuroblastoma cells grown in the presence of 1 mM-6 N.O 2-dibutyryl 3':5'-monophosphate (Bt2cAMP). The time course for activation showed that cAMP-dependent protein kinases were activated by 30 min. A heat-stable inhibitor protein inhibited a majority of activated cAMP-dependent protein kinase. Activation of cAMP—dependent protein kinase caused additional phosphorylation of proteins when compared with untreated control cells, as demonstrated by endogenous phosphorylation of proteins in vitro using [γ-32P]ATP and analysis by two—dimensional polyacrylamide gel electrophoresis. The phosphorylation data show selective phosphorylation of specific proteins by cAMP-independent and cAMP-dependent protein kinase. Among the proteins in the postmitochondrial supernatant fraction phosphorylated by cAMP-dependent protein kinases, two proteins with a molecular weight of 43,000 were heavily phosphorylated. It is suggested that phosphorylation of cellular proteins by cAMP-dependent protein kinases might be involved in the cAMP-modulated biochemical changes in neuroblastoma cells.  相似文献   

17.
Abstract: We previously reported that taurine inhibits the phosphorylation of specific proteins in a P2 synaptosomal fraction prepared from the rat cortex. In the present study, the regulation of the phosphorylation of an ~20K Mr protein whose phosphorylation is inhibited by taurine was further investigated. The phosphorylation of the ~20K Mr protein in a hypo-osmotically shocked P2 fraction from rat cortex was dependent on the free Ca2+ in the reaction medium. Depolarization induced by 30 mM K+ stimulated the phosphorylation of the ~20K Mr protein in an intact synaptosomal P2 preparation by 30-fold. This stimulation was inhibited 35% by taurine, whereas guanidinoethanesulfonic acid, a taurine analogue, did not have any effect, thereby indicating the specificity of taurine. Addition of phorbol 12-myristate 13-acetate, a phorbol ester, together with phosphatidylserine, stimulated the phosphorylation of the ~20K Mr protein in the hypo-osmotically shocked P2 synaptosomal fraction by fivefold, whereas cyclic AMP, cyclic GMP, and calmodulin did not have any effect on the phosphorylation of this particular protein. Phorbol 12-myristate 13-acetate–stimulated phosphorylation of the ~20K Mr protein is blocked 30% by taurine. Taurine also inhibited phorbol 12-myristate 13-acetate-activated phosphorylation of two other proteins that were similar in molecular weight and isoelectric point to the ~20K Mr protein on two-dimensional gels. These results suggest that taurine modulates the phosphorylation of specific proteins regulated by the signal transduction system in the brain. Thus, taurine may modulate neuroactivity by inhibiting the phosphorylation of specific proteins involved in regulatory function.  相似文献   

18.
Abstract: The effects of arachidonic acid and phorbol esters in the Ca2+-dependent release of glutamate evoked by 4-aminopyridine (4-AP) in rat cerebrocortical synaptosomes were studied. In the absence of arachidonic acid, high concentrations (500 n M ) of 4β-phorbol dibutyrate (4β-PDBu) were required to enhance the release of glutamate. However, in the presence of arachidonic acid, low concentrations of 4β-PDBu (1–50 n M ) were effective in potentiating glutamate exocytosis. This potentiation of glutamate release by phorbol esters was not observed with the methyl ester of arachidonic acid, which does not activate protein kinase C. Moreover, pretreatment of synaptosomes with the protein kinase inhibitor staurosporine also prevented the stimulatory effect by arachidonic acid and phorbol esters. These results suggest that the activation of protein kinase C by both arachidonic acid and phorbol esters may play a role in the potentiation of glutamate exocytosis.  相似文献   

19.
The p38 mitogen-activated protein kinase (MAPK) cascade transduces multiple extracellular signals from cell surface to nucleus and is employed in cellular responses to cellular stresses and apoptotic regulation. The involvement of the p38 MAPK cascade in opioid- and opioid receptor-like receptor-1 (ORL1) receptor-mediated signal transduction was examined in NG108-15 neuroblastoma x glioma hybrid cells. Stimulation of endogenous delta-opioid receptor (DOR) or ORL1 resulted in activation of p38 MAPK. It also induced the activation of extracellular signal-regulated kinases (ERKs), another member of the MAPK family, with slower kinetics. Activation of p38 MAPK was abolished by selective antagonists of DOR or ORL1, pretreatment with pertussis toxin, or SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK had no significant effect on opioid-induced ERK activation, indicating that p38 MAPK activity was not required for ERK activation, though its stimulation preceded ERK activation. Inhibition of protein kinase A (PKA) strongly diminished p38 activation mediated by DOR or ORL1 but had no significant effect on ERK activation, and protein kinase C (PKC) inhibitors potentiated stimulation of p38 while inhibiting activation of ERKs. Taken together, our results provide the first evidence for coupling of DOR and ORL1 to the p38 MAPK cascade and clearly demonstrate that receptor-mediated activation of p38 MAPK both involves PKA and is negatively regulated by PKC.  相似文献   

20.
Abstract: Several laboratories have reported a lack of protein kinase C (PKC) activation in response to various stimuli in the brain of aged rats. It has been suggested that changes in lipid membrane composition could be related to this functional deficit. However, recent evidence has indicated that the translocation of PKC to the different subcellular compartments is controlled by protein-protein interactions. Recently, a class of proteins, termed receptors for activated C kinase (RACKs), have been described that bind PKC. The present study was conducted to determine whether alterations in RACK1, the best-characterized member of RACKs, were associated with changes in translocation and expression of PKC. Quantitative immunoblotting revealed that RACK1 content was decreased by ∼50% in aged rat brain cortex, compared with that in adult and middle-aged animals. The levels of calcium-independent PKCδ and ε, interacting with RACK1, and related calcium-independent PKC activity were not modified by the aging process. By comparison, phorbol ester-stimulated translocation of this activity and of PKCδ and ε immunoreactivity was absent in cortex from aged animals, as well as the translocation of the calcium-dependent PKCβ, also known to interact with RACK1. These results indicate that a deficit in RACK1 may contribute to the functional impairment in PKC activation observed in aged rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号