首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Blank, Sally E., T. Bucky Jones, Eric G. Lee, C. JayneBrahler, Randle M. Gallucci, Marne L. Fox, and Gary G. Meadows. Modulation of NK cell cytolytic activity by macrophages in chronically exercise-stressed mice. J. Appl.Physiol. 83(3): 845-850, 1997.This study wasdesigned to investigate the effects of moderate-intensity endurancetraining on basal natural killer (NK) cell cytolytic activity in murinesplenocytes that were enriched for1)NK1.1+ cells or2) macrophages andNK1.1+ cells. Mice were assignedto sedentary (Sed), treadmill control (TM), or treadmill-trained (Trn)groups. Splenocyte number, the percentages ofNK1.1+, large granular lymphocytes(NK1.1+, LGL-1+),and other subpopulations did not change in Trn mice. Approximately 70%of cells enriched for NK1.1+expressed this surface antigen. Lytic units (LU) expressed per LGL-1+ cell were significantlylower in Trn [83.9 ± 3.2 (SE)] compared with Sed (109.5 ± 7.5) and TM (101.3 ± 6.4) groups. When macrophages remainedin the in vitro assay, LU perLGL-1+ cell did not differ acrossgroups. The results indicate that highly enrichedNK1.1+ cells from Trn mice hadlower NK cell activity compared with Sed mice. No differences in NKcell activity were observed when cells were enriched forNK1.1+ cells and macrophages.These findings support the hypothesis that macrophage modulation of NKcells may be one mechanism contributing to augmented basal NK cellactivity in endurance-trained individuals.

  相似文献   

2.
In normal nasal epithelium, the olfactory receptor neurons (ORNs) are continuously replaced through the differentiation of progenitor cells. The olfactory epithelium (OE) of the cystic fibrosis (CF) mouse appears normal at birth, yet by 6 mo of age, a marked dysmorphology of sustentacular cells and a dramatic reduction in olfactory receptor neurons are evident. Electroolfactograms revealed that the odor-evoked response in 30-day-old CF mice was reduced 45%; in older CF mice, a 70% reduction was observed compared with the wild type (WT) response. Consistent with studies of CF airway epithelia, Ussing chamber studies of OE isolated from CF mice showed a lack of forskolin-stimulated Cl secretion and an 12-fold increase in amiloride-sensitive sodium absorption compared with WT mice. We hypothesize that the marked hyperabsorption of Na+, most likely by olfactory sustentacular cells, leads to desiccation of the surface layer in which the sensory cilia reside, followed by degeneration of the ORNs. The CF mouse thus provides a novel model to examine the mechanisms of disease-associated loss of olfactory function. olfactory receptor neurons; sustentacular cells; electroolfactograms  相似文献   

3.
4.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

5.
Cytochrome c activates K+ channels before inducing apoptosis   总被引:10,自引:0,他引:10  
Cellshrinkage is an early prerequisite for apoptosis. Theapoptotic volume decrease is due primarily to loss ofcytoplasmic ions. Increased outward K+ currents have indeedbeen implicated in the early stage of apoptosis in many celltypes. We found that cytoplasmic dialysis of cytochrome c(cyt-c), a mitochondria-dependent apoptotic inducer,increases K+ currents before inducing nuclear condensationand breakage in pulmonary vascular smooth muscle cells. Thecyt-c-mediated increase in K+ currents tookplace rapidly and was not affected by treatment with a specificinhibitor of caspase-9. Cytoplasmic dialysis of recombinant (active)caspase-9 negligibly affected the K+ currents. Furthermore,treatment of the cells with staurosporine (ST), an apoptosisinducer that mediates translocation of cyt-c frommitochondria to the cytosol, also increased K+ currents,caused cell shrinkage, and induced apoptosis (determined byapoptotic nuclear morphology and TdT-UTP nick end labeling assay).The staurosporine-induced increase in K+ currents concurredto the volume decrease but preceded the activation of apoptosis(nuclear condensation and breakage). These results suggest that thecyt-c-induced activation of K+ channels and theresultant K+ loss play an important role in initiating theapoptotic volume decrease when cells undergo apoptosis.

  相似文献   

6.
In synchronized Chlorella sorokiniana cells, the NH4+ inducibleNADP-specific glutamate dehydrogenase enzyme (NADP-GDH) accumulatedin a linear manner throughout the first cell cycle. Early inthe following second cell cycle, an increase in its rate ofaccumulation occurred that was proportional to the increasein total cellular DNA in the previous cell cycle. In synchronizedbacterial cells, increases in rate of linear accumulation ofinducible enzymes coincide with the time of replication of theirstructural genes. To determine whether the rate change in NADPGDHaccumulation resulted from a delay in replication of its nuclearstructural gene (gdhN) in fully induced C. sorokiniana cells,the cell cycle timing of replication of this gene was comparedto that of another nuclear gene, nitrate reductase (nia), andof a chloroplast gene, ribulose bisphosphate carboxylase large-subunit(rbcL), in synchronized cells cultured in NH4+ or NO3(uninduced) medium. The gdhN and nia genes replicated withinthe period of nDNA synthesis and rbcL within the period of ctDNAsynthesis in cells growing in either nitrogen source. Therefore,the delayed rate change in enzyme accumulation results froma process that regulates expression of the gdhN gene after itsreplication. (Received July 16, 1994; Accepted November 28, 1994)  相似文献   

7.
Resting membrane potential (RMP) and whole cell currents wererecorded in human THP-1 monocytes adherent to polystyrene, unstimulated human umbilical vein endothelial cells (HUVECs),lipopolysaccharide (LPS)-treated HUVECs, immobilizedE-selectin, or vascular cell adhesion molecule 1 (VCAM-1)using the patch-clamp technique. RMP after 5 h on polystyrene was24.3 ± 1.7 mV (n = 42) with delayed rectifier K+(Idr) andCl currents(ICl) presentin >75% of the cells. Inwardly rectifying K+ currents(Iir) werepresent in only 14% of THP-1 cells. Adherence to unstimulated HUVECsor E-selectin for 5 h had no effect on Iir orICl but decreasedIdr. Five hoursafter adherence to LPS-treated HUVECs, outward currents were unchanged,but Iir waspresent in 81% of THP-1 cells. A twofold increase inIir and ahyperpolarization (41.3 ± 3.7 mV,n = 16) were abolished by pretreatmentof THP-1 cells with cycloheximide, a protein synthesis inhibitor, orherbimycin A, a tyrosine kinase inhibitor, or by pretreatment of theLPS-treated HUVECs with anti-VCAM-1. Only a brief (15-min) interactionbetween THP-1 cells and LPS-treated HUVECs was required toinduce Iir expression 5 h later. THP-1 cells adherent to VCAM-1 exhibited similarconductances to cells adherent to LPS-treated HUVECs. Thus engagementof specific integrins results in selective modulation of differentK+ conductances.

  相似文献   

8.
The neuronal K-Cl cotransporter isoform (KCC2) was functionallyexpressed in human embryonic kidney (HEK-293) cell lines. Two stablytransfected HEK-293 cell lines were prepared: one expressing anepitope-tagged KCC2 (KCC2-22T) and another expressing theunaltered KCC2 (KCC2-9). The KCC2-22T cells produced aglycoprotein of ~150 kDa that was absent from HEK-293 control cells.The 86Rb influx in both cell lineswas significantly greater than untransfected control HEK-293 cells. TheKCC2-9 cells displayed a constitutively active86Rb influx that could beincreased further by 1 mMN-ethylmaleimide (NEM) but not by cellswelling. Both furosemide [inhibition constant (Ki) ~25µM] and bumetanide (Ki~55 µM) inhibited the NEM-stimulated 86Rb influx in the KCC2-9cells. This diuretic-sensitive86Rb influx in theKCC2-9 cells, operationally defined as KCC2 mediated, required external Clbut not external Na+ and exhibiteda high apparent affinity for externalRb+(K+)[Michaelis constant(Km) = 5.2 ± 0.9 (SE) mM; n = 5] but alow apparent affinity for externalCl(Km >50 mM). Onthe basis of thermodynamic considerations as well as the unique kineticproperties of the KCC2 isoform, it is hypothesized that KCC2 may servea dual function in neurons: 1) themaintenance of low intracellularCl concentration so as toallow Cl influx vialigand-gated Cl channelsand 2) the buffering of externalK+ concentration([K+]o) in the brain.

  相似文献   

9.
Exocytic insertion of H+-ATPase into the apical membrane of inner medullary collecting duct (IMCD) cells is dependent on a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein target receptor (SNARE) complex. In this study we determined the role of Munc-18 in regulation of IMCD cell exocytosis of H+-ATPase. We compared the effect of acute cell acidification (the stimulus for IMCD exocytosis) on the interaction of syntaxin 1A with Munc-18-2 and the 31-kDa subunit of H+-ATPase. Immunoprecipitation revealed that cell acidification decreased green fluorescent protein (GFP)-syntaxin 1A and Munc-18-2 interaction by 49 ± 7% and increased the interaction between GFP-syntaxin 1A and H+-ATPase by 170 ± 23%. Apical membrane Munc-18-2 decreased by 27.5 ± 4.6% and H+-ATPase increased by 246 ± 22%, whereas GP-135, an apical membrane marker, did not increase. Pretreatment of IMCD cells with a PKC inhibitor (GO-6983) diminished the previously described changes in Munc-18-2-syntaxin 1A interaction and redistribution of H+-ATPase. In a pull-down assay of H+-ATPase by glutathione S-transferase (GST)-syntaxin 1A bound to beads, preincubation of beads with an approximately twofold excess of His-Munc-18-2 decreased H+-ATPase pulled down by 64 ± 16%. IMCD cells that overexpress Munc-18-2 had a reduced rate of proton transport compared with control cells. We conclude that Munc-18-2 must dissociate from the syntaxin 1A protein for the exocytosis of H+-ATPase to occur. This dissociation leads to a conformational change in syntaxin 1A, allowing it to interact with H+-ATPase, synaptosome-associated protein (SNAP)-23, and vesicle-associated membrane protein (VAMP), forming the SNARE complex that leads to the docking and fusion of H+-ATPase vesicles. soluble N-ethylmaleimide-sensitive factor attachment protein target receptor; cell pH; acid secretion  相似文献   

10.
Young, A. J., Collins, J. C. and Russell, G. 1987. Ecotypicvariation in the osmotic responses of Enteromorpha intestinalis(L.) Link.—J. exp. Bot. 38: 1309–1324. The physiological basis for salt tolerance has been studiedin the euryhaline marine alga Enteromorpha intestinalis. Adaptationto dilute and concentrated seawaters has been investigated inthree separate populations of this alga: marine, rock pool andestuarine. Internal K+, Na+ and Cl levels have been determined usingtracer efflux analyses. K+ has been shown to be the major osmoticsolute within this alga. Cellular levels of Cl and, inparticular, Na+ are low although levels in the cell wall arehigh. Levels of these ions varied considerably between the separateplants; K+ levels within marine plants of E. intestinalis aretwo to four times those found in the other populations. Thetertiary sulphonium compound ß-dimethylsulphonio-propionateis maintained at relatively high levels, although it remainsfairly insensitive to change in the external salinity. Changes in the tissue water content and cell volume are large,particularly within the estuarine plants. The thin cell wallsof these plants allow large changes in volume in the diluteconditions experienced in an estuary, while low turgor preventscell rupture. Thicker cell walls and small cells of the marineand rock pool plants assist in tolerating high and low externalosmotic potential—the estuarine plants respond poorlyto concentrated seawater. Key words: Enteromorpha, osmoregulation, ecotypes  相似文献   

11.
When cells of acriflavine-sensitive (acrA) and acriflavine-resistant(acrA+) Escherichia coli K-12 strains were treated with a ratherhigh concentration (100 µg ml-1) of acriflavine in mediumthat had been adjusted to pH 8.1, distinct whirlpool-like structuresderived from the plasma membrane appeared not only in the acrAcells but also in the acrA+ cells. Chemical analysis was performedto determine the lipid composition of the cells by thin-layerchromatography on silica gel and gas-liquid chromatography.The amount of total fatty acids was significantly higher inthe acrA cells than in the acrA+ cells, when cells were culturedin the presence of acriflavine. This difference seems to becaused by the greater accumulation of unsaturated fatty acids(palmitoleic and cis-vaccenic acid) in the acrA mutant cellsthan in the acrA+ cells and by the acceleration of this accumulationas a result of the presence of the dye. A comparison of phospholipidcontents between the acrA and acrA+ cells cultured under acriflavine-freeconditions showed that the former cells contained more phosphatidylethanolamine(PE) and, in particular, more cardiolipin (CL) than the lattercells. However, the situation was reversed in the case of phosphatidylglycerol(PG). Addition of acriflavine to the medium led to a markedincrease in levels of PE and CL in both acrA and acrA+ cellsbut an increase in levels of PG was found only in the acrA+cells. (Received October 13, 1992; Accepted May 31, 1993)  相似文献   

12.
Iwano  Megumi 《Plant & cell physiology》1995,36(7):1297-1301
ATPase activity in the cell membrane of a salt-stressed cyanobacterium,Nostoc muscorum M-14, was examined cytochemically by three differentstaining protocols. Application of Hulstaert's method resultedin distinct precipitation of the reaction products of ATPaseinside the cell membrane exclusively. No reaction products wereformed when ATP was replaced by GTP or when dicyclohexylcarbodiimideor N-ethylmaleimide was present in the reaction mixture. Bycontrast, low levels were detectable after the reaction in thepresence of ouabain. Bafilomycin did not affect the formationof products. Mayahara's method, which is considered to demonstratethe reaction of Na+,K+-ATPase activity, revealed the presenceof a ouabain-sensitive Na+,K+-ATPase in the cell membrane, whileWachstein-Meisel's method revealed the presence of an ATPaseactivity that was resistant to ouabain. It appears, therefore,that cell membranes of Nostoc muscorum contain both ouabain-sensitiveATPase and ouabain-insensitive ATPase. Comparison of the stainingprofiles of salt-stressed cells with those of control cellssuggested that a high-salt environment activates the ouabain-sensitiveNa+,K+-ATPase, which seems likely to be involved in the effluxof Na+ ions. (Received February 7, 1995; Accepted August 9, 1995)  相似文献   

13.
Brief treatment of mt+ gametes of Chlamydomonas reinhardtiiwith trypsin or -chymotrypsin resulted in complete loss of flagellaragglutinability, without loss of cell motility, and concomitantrelease of cell body agglutinins (CBAs) into the culture medium.Release of CBAs also occurred when walled gametes without flagellawere treated with proteases. 1Present address: Department of Biology, Washington UniversitySt. Louis, MO 63130, U.S.A.  相似文献   

14.
The response ofH+-ATPase to lethal acid stress isunknown. A mutant strain (called NHE2d) was derived from cultured inner medullary collecting duct cells (mIMCD-3 cells) following three cyclesof lethal acid stress. Cells were grown to confluence on coverslips,loaded with2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, andmonitored for intracellular pH(pHi) recovery from an acid load. The rate of Na+-independentpHi recovery from an acid load inmutant cells was approximately fourfold higher than in parent cells(P < 0.001). TheNa+-independentH+ extrusion was ATP dependent and K+ independent and wascompletely inhibited in the presence of diethylstilbestrol, N, N'-dicyclohexylcarbodiimide,or N-ethylmaleimide. Theseresults indicate that theNa+-independentH+ extrusion in cultured medullarycells is mediated via H+-ATPaseand is upregulated in lethal acidosis. Northern hybridization experiments demonstrated that mRNA levels for the 16- and 31-kDa subunits of H+-ATPase remainedunchanged in mutant cells compared with parent cells. We propose thatlethal acid stress results in increased H+-ATPase activity in innermedullary collecting duct cells. Upregulation ofH+-ATPase could play a protectiverole against cell death in severe intracellular acidosis.

  相似文献   

15.
The effect of Na+ on phosphate uptake was studied in four strainsof cyanobacteria: Synechococcus PCC 7942, Gloeothece PCC 6501,Phormidium sp. and Chlorogloeopsis PCC 6912. Phosphate uptakewas stimulated by Na+ in all cases. Li+ and K+ acted as partialanalogues for Na+. Half-saturation [K1/2(Na+)] of phosphateuptake was reached with Na+ concentrations ranging from 317µM in Chlorogloeopsis to 659 µM in Phormidium. Theconcentration of phosphate required to reach half-saturationof phosphate uptake [K1/2(Pi)]was not changed by the presenceof Na+. (Received April 11, 1994; Accepted July 5, 1994)  相似文献   

16.
程东美  张志祥  胡美英 《昆虫学报》2007,50(10):1022-1026
研究了闹羊花素Ⅲ对斜纹夜蛾Spodoptera litura离体培养细胞(SL细胞)的活性,并测定了对SL细胞Na+、K+和葡萄糖吸收以及对4龄幼虫血细胞数量的影响。结果表明:以400 µg/mL 和200µg/mL闹羊花素Ⅲ处理SL细胞,24 h后细胞的相对死亡率为79.00% 和56.69%,处理后8 h,16 h,24 h和48 h的LC50分别为240.09 µg/mL,173.45 µg/mL,113.56 µg/mL和73.40 µg/mL;闹羊花素Ⅲ处理SL细胞后10 min,细胞对离子的吸收迅速增加,30 min后吸收作用逐渐减弱;处理后3天内细胞对葡萄糖的吸收迅速增加,4~5 天后,细胞对葡萄糖的吸收基本停止。以叶碟法和注射法处理4龄幼虫,8 h后幼虫血细胞数量显著降低,随处理时间增加,幼虫血细胞数量又逐渐增加。  相似文献   

17.
The contribution of K+ accumulation to cell turgor pressurewas investigated in the gas-vacuolate blue-green alga Anabaenaflos-aquae. The cell turgor pressure, measured by the gas vesiclemethod, drops in cells suspended in culture medium depletedof K+ but rapidly rises again, by 100 kPa or more, when K+ isresupplied. A similar though rather slower rise in turgor pressureis supported by an equivalent concentration of Rb+. The internalK+ concentration rose from 66 to 91 mM when K+ was suppliedat an external concentration of 0.4 mM. This rise was light-dependent.Greater increases in internal K+ concentration and turgor pressureoccurred when K+ was supplied at a higher concentration, 3.6mM. In both cases over 60% of the observed turgor pressure risecould be accounted for by accumulation of K+. The turgor pressurerise supported by light-stimulated K+ uptake can cause collapseof enough of the alga's gas vesicles to destroy its buoyancy.The effect of K+ availability on buoyancy regulation by planktonicblue-green algae is discussed.  相似文献   

18.
Tolerance to NaCl was studied in cell suspension cultures ofKosteletzkya virginica (L.) Presl. (Malvaceae), a dicotyledonoushalophyte that grows in tidal marshes of the eastern UnitedStates. Growth of salinized cultures was significantly inhibitedat high (255 mol m–3 NaCl), but not at lower externalsalinities. Adjustment of cell suspensions to Nacl was rapid,with the duration of the normal growth cycle unaffected by salinity.Maximum biomass was attained when cultures were exposed to NaClduring early log growth. Patterns of inorganic ion accumulationreflected the utilization of both Na+ and K+ as osmotica, withNa+ content substantially increasing when cells were grown atan external salinity sufficient to reduce growth. K+ uptakeselectivity was high and Na+/K+ ratios were low in salt-treatedcultures even though K+ content was somewhat lower comparedto unsalinized cultures. Free proline and microsomal lipid contentincreased in salt-treated cell cultures. Key words: Kosteletzkya virginica, halophyte, salt tolerance, cell suspension culture  相似文献   

19.
A method has been developed to measure the cell volume of theunicellular green alga Dunaliella parva 19/9 using Li+ measurementsonly. Concentrations of internal solutes can also be calculatedif they are assayed in the same samples as Li+. We found thatD. parva cells grown in 0.4 kmol m–3 NaCl have an averageaqueous cell volume of 65.1 ?2.9 µm3, a K+ concentrationof 126?6 mol m–3, a Na+ concentration of 11?11 mol m–3and a glycerol concentration of 615?27 mol m–3 (n= 12).Algae grown in 1.5 kmol m–3 NaCl have an average aqueouscell volume of 131 ?7.5 µm3, a K+ concentration of 109?4mol m–3, a Na+ concentration of 10?39 mol m–3 anda glycerol concentration of 1 425?59 mol m–3 (n = 12).These results indicate that D. parva cells adapted to high salinitieshave larger cell volumes than those adapted to lower salinities.However, there is no evidence for a significant difference ininternal Na+ concentration, despite the almost 4-fold differencein the concentration of external NaCl. The intracellular glycerolconcentration alone accounts for 65% and 54%, respectively,of the osmotic balance in low and high salt grown cells. Key words: Dunaliella, cell volume, intracellular solutes  相似文献   

20.
Radish (Raphanus sativus L.) microsomal vesicles show a vanadate-?nd nitrate-insensitive, and imidodiphosphate-sensitive electrogenictransport of protons dependent upon addition of inorganic pyrophosphate(PP) or ADP. The activity is detectable in preparations from24 h-old seedlings and increases about 3 fold in vesicles from72 h-old seedlings. The ADP-dependent proton uptake, being preventedby inorganic pyrophosphatase, used as a PP scavenging system,can be ascribed to enzymes utilizing ADP and producing PP whichappears the only substrate for the proton pumping PPase. TheH+-PPase has a Km of ca. 10 µM for the translocating functionand 20 µM for the hydrolytic activity. It has a pH optimumnear to 7.0 and is stimulated by certain monovalent cations(K+, Rb+ and Cs+). The majority of this activity is associatedwith a high density (35–45% sucrose interface) fractionwhich is enriched for vanadate-sensitive, nitrate-insensitiveATPase activity. (Received September 11, 1989; Accepted December 22, 1989)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号