首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

2.
Phylogenetic relationships among the nine spiral-horn antelope species of the African bovid tribe Tragelaphini are controversial. In particular, mitochondrial DNA sequencing studies are not congruent with previous morphological investigations. To test the utility of nuclear DNA intron markers at lower taxonomic levels and to provide additional data pertinent to tragelaphid evolution, we sequenced four nuclear DNA segments (MGF, PRKCI, SPTBN, and THY) and combined these data with mitochondrial DNA sequences from three genes (cytochrome b, 12S rRNA, and 16S rRNA). Our molecular supermatrix comprised 4682 characters which were analyzed independently and in combination. Parsimony and model based phylogenetic analyses of the combined nuclear DNA data are congruent with those derived from the analysis of mitochondrial gene sequences. The corroboration between nuclear and mtDNA gene trees reject the possibility that genetic processes such as lineage sorting, gene duplication/deletion and hybrid speciation account for the conflict evident in the previously published phylogenies. It suggests rather that the morphological characters used to delimit the Tragelaphid species are subject to convergent evolution. Divergence times among species, calculated using a relaxed Bayesian molecular clock, are consistent with hypotheses proposing that climatic oscillations and their impact on habitats were the major forces driving speciation in the tribe Tragelaphini.  相似文献   

3.
Previously, anilioids (Aniliidae, Anomochilidae, Cylindrophiidae and Uropeltidae) were considered the only extant, non‐macrostomatan alethinophidian snakes. Although their monophyly and intrarelationships remained poorly established, their fossoriality, small gape, and inferred phylogenetic position have been important evidence in orthodox scenarios about early snake evolution. Recent molecular studies including aniliids, cylindrophiids and uropeltids indicate anilioid polyphyly, with the latter two families comprising a clade nested within Macrostomata. We carried out the first molecular phylogenetic analysis to include the very poorly known and seemingly rare Anomochilidae. Only partial sequences of 12S and 16S rRNA mitochondrial genes could be amplified from tissue collected from a single dead specimen of Anomochilus leonardi. Amplification failed for nuclear and other mitochondrial genes, and for all the investigated genes for the holotype and paratype of A. leonardi. Analyses recovered a para‐ or polyphyletic Anilioidea. Anomochilus is recovered as most closely related to Cylindrophis maculatus (rendering Cylindrophiidae possibly paraphyletic). The relatively small amount of available data produces only moderate levels of support, but the stability of taxa and agreement across different analytical methods and with larger analyses of snake phylogeny support the abandonment of Anilioidea as a natural taxon, and the recognition of a higher category for a clade comprising Asian anilioids (Anomochilidae, Cylindrophiidae and Uropeltidae).  相似文献   

4.
The slipper lobsters belong to the family Scyllaridae which contains a total of 20 genera and 89 species distributed across four subfamilies (Arctidinae, Ibacinae, Scyllarinae, and Theninae). We have collected nucleotide sequence data from regions of five different genes (16S, 18S, COI, 28S, H3) to estimate phylogenetic relationships among 54 species from the Scyllaridae with a focus on the species rich subfamily Scyllarinae. We have included in our analyses at least one representative from all 20 genera in the Scyllaridae and 35 of the 52 species within the Scyllarinae. Our resulting phylogenetic estimate shows the subfamilies are monophyletic, except for Ibacinae, which has paraphyletic relationships among genera. Many of the genera within the Scyllarinae form non-monophyletic groups, while the genera from all other subfamilies form well supported clades. We discuss the implications of this history on the evolution of morphological characters and ecological transitions (nearshore vs. offshore) within the slipper lobsters. Finally, we identify, through ancestral state character reconstructions, key morphological features diagnostic of the major clades of diversity within the Scyllaridae and relate this character evolution to current taxonomy and classification.  相似文献   

5.
The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed.  相似文献   

6.
Higher-level relationships among catfishes were investigated by parsimony, maximum likelihood and Bayesian analyses of two nuclear genes across 110 catfish species representing 36 of 37 families and Conorhynchos (family incertae sedis). Analysis of 3660 aligned base pairs from the rag1 and rag2 genes confirms monophyly of Siluriformes, of most siluriform families and of a number of multifamily groups, some recognized, some novel. South American Loricarioidei are recovered as the sistergroup to other catfishes which are divided into Diplomystidae and Siluroidei. This result contrasts with the prevailing hypothesis that Diplomystidae is the sister to all other catfishes. Monophyly of Siluroidei is supported by rag data including a unique three-codon deletion from rag1. Deep within Siluroidei are 12 large, strongly supported groups with poorly resolved interrelationships. Five are single families: Cetopsidae, Plotosidae, Chacidae, Siluridae and Pangasiidae. Four others are monophyletic taxa ranked here as superfamilies: Clarioidea (Clariidae, Heteropneustidae), Arioidea (Ariidae, Anchariidae), Pimelodoidea (Pimelodidae, Pseudopimelodidae, Heptapteridae, Conorhynchos), Ictaluroidea (Ictaluridae, Cranoglanididae). South American Doradoidea (Doradidae, Auchenipteridae) and Aspredinidae are a sistergroup pair. Sisoroidea (without Aspredinidae), Ailia+Laides, Horabagridae, and Bagridae (without Rita) form a large, predominantly Asian clade, "Big Asia." Mochokidae, Malapteruridae, Amphiliidae, Claroteidae, and African schilbids are united as a species-rich African clade, "Big Africa." The three large continental clades, "Big Asia," "Big Africa" and Neotropical Loricarioidei suggest a prevalence of intracontinental diversification of catfishes. South America is the home of the Gymnotiformes, putative sistergroup of catfishes, plus two of the deepest siluriform clades, Loricarioidei and Diplomystidae, thus suggesting an ancient siluriform presence if not origin there. The rag phylogeny does not identify any African-South American catfish clade. The well-known African-Asian relationships within families Clariidae and Bagridae are confirmed, as is the recently found North American-Asian relationship between Ictaluridae and Cranoglanididae.  相似文献   

7.
Partial nucleotide sequences of the citrate synthase (gltA) gene from different rhizobia genera were determined. Tree topologies based on this housekeeping gene were similar to that obtained using 16S rRNA sequences. However gltA appeared to be more reliable at determining phylogenetic relationships of closely related taxa. We propose gltA sequences as an additional tool to be used in molecular phylogenetic studies.  相似文献   

8.
The Hamamelidaceae is a family that bridges the basal elements of the Rosidae and the lower Hamamelidae, thus a better understanding of the phylogeny of the family is important for clarifying evolutionary patterns in the diversification of eudicots. However, subfamilial as well as tribal relationships in the Hamamelidaceae have been controversial. Nucleotide sequences of the chloroplast genematK were used to study the intergeneric relationships of the family. In the phylogenetic trees, constructed using parsimony analysis, the clade containingAltingia andLiquidambar (Altingioideae) is sister to a clade that includes all other Hamamelidaceae.Exbucklandia andRhodoleia form a clade, suggesting a close relationship between the two genera.Disanthus is sister to the monophyletic Hamamelidoideae. The paraphyletic arrangement ofDisanthus, Mytilaria andExbucklandia with respect to the Hamamelidoideae does not support the combination of these genera in one subfamily. In the Hamamelidoideae, thematK phylogeny supports the monophyly of several previously recognized groups with modifications, including the tribes Eustigmateae (incl.Molinadendron), Fothergilleae (excl.Molinadendron andMatudaea), and the subtribe Dicoryphinae. However, the Hamamelideae as traditionally circumscribed is polyphyletic. Apetaly has evolved three times independently in the Hamamelidoideae.  相似文献   

9.
Plants of Central Asia have played a significant role in the origin of floras of Eurasia and the Northern Hemisphere. Chesneya, a small leguminous genus occurring in Central Asia, western Asia, and Tibet, is used to establish phylogenetic relationships and discuss the evolutionary and biogeographical history based on sequence data of ITS and trnS-trnG and rbcL. We employed BEAST Bayesian inference for dating, and S-DIVA, Lagrange and BBM for ancestral area reconstruction. Our results indicate that Chesniella should be a separate genus, while Spongiocarpella should be included in Chesneya. A classification system within Chesneya comprising five sections is presented. The diversification of Chesneya (crown age ca. 16.56 Ma) is speculated to have been associated with Qinghai-Tibetan Plateau (QTP) uplift. The following aridification process resulted in the Pliocene diversification of four sections of Chesneya during 4.8–2.06 Ma. Ancestral area reconstruction indicates the Himalayas is the ancestral area of Chesneya and Chesniella, but within Central Asia, the western lowlands, can be inferred as the cradle of most dispersals.  相似文献   

10.
Melanthiaceae (Liliales) comprise 17 genera of rhizomatous or bulbous perennials and are distributed across the Northern Hemisphere. The relationships among the five tribes in this family have been evaluated in many molecular and morphological studies. In this study, we performed a phylogenetic analysis of the 17 genera, including 106 species of Melanthiaceae sensu APG III and nine related species as outgroups, based on sequences of five plastid regions (atpB, rbcL, matK, ndhF and trnL‐F). Support values for the monophyly of the family (BSMP = 96%, BSML = 100%, PPBI = 1.00) and each tribe were improved in comparison with previous studies. Among the tribes, Melanthieae were sister to the remainder of the family and sister relationships between Xerophylleae and Parideae (BSMP = 96%, BSML = 100%, PPBI = 1.00) and Chionographideae and Heloniadeae (BSMP = 96%, BSML = 100%, PPBI = 1.00) were confirmed. Notably, the generic concept of Veratrum s.l. including Melanthium was not supported in the present study and these genera should be treated as distinct. In the case of Parideae, the relationship of Trillium govanianum to the other species remains uncertain and requires further studies. Finally, we mapped seven representative morphological characters onto the molecular phylogenetic tree for Melanthiaceae.  相似文献   

11.
We conducted phylogenetic analyses using two DNA sequence data sets derived from matK, the maturase-coding gene located in an intron of the plastid gene trnK, and the internal transcribed spacer region of 18S–26S nuclear ribosomal DNA to examine relationships in subtribe Aeridinae (Orchidaceae). Specifically, we investigated (1) phylogenetic relationships among genera in the subtribe, (2) the congruence between previous classifications of the subtribe and the phylogenetic relationships inferred from the molecular data, and (3) evolutionary trends of taxonomically important characters of the subtribe, such as pollinia, a spurred lip, and a column foot. In all, 75 species representing 62 genera in subtribe Aeridinae were examined. Our analyses provided the following insights: (1) monophyly of subtribe Aeridinae was tentatively supported in which 14 subclades reflecting phylogenetic relationships can be recognized, (2) results are inconsistent with previous classifications of the subtribe, and (3) repeated evolution of previously emphasized characters such as pollinia number and apertures, length of spur, and column foot was confirmed. It was found that the inconsistencies are mainly caused by homoplasy of these characters. At the genus level, Phalaenopsis, Cleisostoma, and Sarcochilus are shown to be non-monophyletic.  相似文献   

12.
Summary Analysis of data obtained from molecular hybridization of3H-labeled repetitious DNA has been utilized to reconstruct the broad outlines of phylogenetic relationships among decapod Crustacea. This molecular reconstruction agrees reasonably well with the paleontological record, and with other schemes obtained by comparative morphological and serological approaches. Preliminary evidence is in line with the hypothesis that continuous addition of new repeated sequence families to the genome over long periods of time may in part account for the correlation observed between percent repetitious DNA hybridized and divergence time. It is tentatively concluded that a core of DNA base sequence homology has been highly conserved throughout the evolution of theCrustacea. Demonstration of inter-species sequence homology has important implications to models which relegate a genetic regulatory function to repeated DNAs.  相似文献   

13.
14.
Recent mitogenomic studies suggest a new position for the deep-sea fishes of the order Alepocephaliformes, placing them within the Otocephala in contrast to their traditional placement within the Euteleostei. However, these studies included only two alepocephaliform taxa and left several questions unsolved about their systematics. Here we use whole mitogenome sequences to reconstruct phylogenetic relationships for 11 alepocephaliform taxa, sampled from all five nominal families, and a large selection of non-alepocephaliform teleosts, to address the following three questions: (1) is the Alepocephaliformes monophyletic, (2) what is its phylogenetic position within the Teleostei and (3) what are the relationships among the alepocephaliform families? Our character sets, including unambiguously aligned, concatenated mitogenome sequences that we have divided into four (first and second codon positions, tRNA genes, and rRNA genes) or five partitions (same as before plus the transversions at third codon positions, using "RY" coding), were analyzed by the partitioned maximum likelihood and Bayesian methods. Our result strongly supported the monophyly of the Alepocephaliformes and its close relationship to the Clupeiformes and Ostariophysi. Altogether, these three groups comprise the Otocephala. Statistical comparison using likelihood-based SH test confidently rejected the monophyly of the Euteleostei when including the Alepocephaliformes. However, increasing the taxonomic sampling within the Alepocephaliformes did not resolve its position relative to the Clupeiformes and Ostariophysi. Within the Alepocephaliformes, our results strongly supported the monophyly of the platytroctid genera but not that of the remaining taxa. From one analysis to other, platytroctids were either the sister group of the remaining taxa or nested within the alepocephalids. Inferred relationships among alepocephaliform taxa were not congruent with any of the previously published phylogenetic hypotheses based on morphological characters.  相似文献   

15.
The phylogenetic relationships among the Drosophila melanogaster group species were analyzed using approximately 1700 nucleotide-long sequences of the mitochondrial DNA. Phylogenetic analysis was performed using this region consisting of a part of the cytochrome b (cytb) coding gene, the entire coding sequences of tRNA-Leu, tRNA-Ser and the first subunit of NADH dehydrogenase (NADH1), and a part of the 16S-rRNA gene. The study of these sequences showed that this region of mtDNA is very invariable, as regards with the type of the genes that it contains, as well as the order that they are located on it. The resulting phylogenetic trees reveal a topology that separates the species into three main ancestral lines, leading to the following subgroups: (a) ananassae subgroup, (b) montium subgroup, and (c) melanogaster and Oriental subgroups. The inferred topology complements and generally agrees with previously proposed classifications based on morphological and molecular data.  相似文献   

16.
从细胞色素b基因序列探讨笛鲷属的分子系统发生关系   总被引:3,自引:0,他引:3  
测定了9种中国南海的笛鲷属鱼类的细胞色素b基因的部分序列,结合来自GenBank中1种分布于菲律宾和9种分布于美国大西洋的笛鲷属鱼类的相应同源序列,用邻接法和最大简约法构建分子系统树。结果显示:红鳍笛鲷(Lutjanuserythropterus)与红笛鲷(L.sanguineus)之间的同源序列碱基差异百分率只有0.32%,支持二者是同种异名的观点;中国南海的笛鲷属鱼类间的平均碱基差异要高于美国大西洋笛鲷属鱼类。在MP和NJ树中,美国大西洋笛鲷表现为亲缘关系较近,来源于中国南海的笛鲷鱼类相对集中在树的基部,分歧较大。这与所研究的笛鲷地理分布和地理隔离基本相一致,同时也说明中国南海笛鲷分化较早并且分歧较大。  相似文献   

17.
The community of myxosporeans and actinosporeans inhabiting a typical Scottish highland stream and the outflow area of an adjacent salmon hatchery was analysed on the basis of their 18S rDNA sequences. Nine myxosporeans belonging to the genera Sphaerospora, Chloromyxum, Zschokkella, Myxidium, Hoferellus and Myxobilatus were identified from mature spores in different organs of the fish species present. Twelve actinosporean types belonging to the collective groups of neoactinomyxum, aurantiactinomyxon, raabeia, echinactinomyxon and synactinomyxon were found to be released from oligochaete worms collected from sediments. Twenty of the 21 sequences obtained from these myxozoans are new entries to the myxozoan database, and the genera Chloromyxum, Hoferellus and Myxobilatus were entered for the first time. Study of the molecular relationships between the different taxa and with other myxozoan sequences available showed that the myxosporeans inhabiting the urinary system clearly cluster together, independently of host species or spore morphology. However, the sequences of the two Sphaerospora species encountered show considerable differences from other members of this group and all other freshwater myxosporeans, and they were found to occupy an ancestral marine position. Three actinosporeans, i.e. Neoactinomyxum eiseniellae, Aurantiactinomyxon pavinsis and Raabeia 'type 3' were found to represent alternate life cycle stages of Chloromyxum sp., Chloromyxum truttae and Myxidium truttae, respectively (approximately 1400 identical base pairs each). Three other actinosporeans encountered (two echinactinomyxon and one raabeia type) showed over 92% sequence identity with myxosporeans from GenBank, whereas all other actinosporeans formed a closely related group devoid of any known myxosporeans.  相似文献   

18.
It has proven remarkably difficult to obtain a well-resolved and strongly supported phylogeny for horned lizards (Phrynosoma) because of incongruence between morphological and mitochondrial DNA sequence data. We infer the phylogenetic relationships among all 17 extant Phrynosoma species using >5.1 kb of mtDNA (12S rRNA, 16S rRNA, ND1, ND2, ND4, Cyt b, and associated tRNA genes), and >2.2kb from three nuclear genes (RAG-1, BDNF, and GAPD) for most taxa. We conduct separate and combined phylogenetic analyses of these data using maximum parsimony, maximum likelihood, and Bayesian methods. The phylogenetic relationships inferred from the mtDNA data are congruent with previous mtDNA analyses based on fewer characters and provide strong support for most branches. However, we detected strong incongruence between the mtDNA and nuclear data using comparisons of branch support and Shimodaira-Hasegawa tests, with the (P. platyrhinos+P. goodei) clade identified as the primary source of this conflict. Our analysis of a P. mcalliixP. goodei hybrid suggests that this incongruence is caused by reticulation via introgressive hybridization. Our preferred phylogeny based on an analysis of the combined data (excluding the introgressed mtDNA data) provides a new framework for interpreting character evolution and biogeography within Phrynosoma. In the context of this improved phylogeny we propose a phylogenetic taxonomy highlighting four clades: (1) Tapaja, containing the viviparous short-horned lizards P. ditmarsi, P. hernandesi, P. douglasii, and P. orbiculare; (2) Anota, containing species with prominent cranial horns (P. solare, P. mcallii, and the P. coronatum group); (3) Doliosaurus, containing three species lacking antipredator blood-squirting (P. modestum, P. platyrhinos, and P. goodei); and (4) Brevicauda, containing two viviparous species with extremely short tails that lack blood-squirting (P. braconnieri and P. taurus).  相似文献   

19.
采用分子系统学方法对鹟亚科(Muscicapinae)6属31种鸟类的cytb基因序列992bp进行系统发生分析。以荒漠伯劳(Lanius isabellinus)和发冠卷尾(Dicrurus hottentottus)为外群,采用贝叶斯法(Bayesian,BI)、最大似然法(Maximum-likelihood,ML)和最大简约法(Maximumparsimony,MP)分别构建鹟亚科的系统发育树。结果支持:寿带属(Terpsiphone)、扇尾鹟属(Rhipidura)与方尾鹟属(Culicicapa)可从鹟亚科中移出,其中寿带属归入王鹟科(Monarchidae),扇尾鹟属与方尾属归入扇尾鹟科(Rhipiduridae);鹟属(Muscicapa)、仙鹟属(Niltava)为单系发生,并聚为姐妹群,亲缘关系较近;姬鹟属(Ficedula)并非单系发生,白眉姬鹟(Ficedulazanthopygia)在3种系统发生树中的位置差别较大,研究结果未能确定其分类地位;铜蓝(Muscicapa thalassina)与白腹蓝(Cyanoptila cyanomelana)亲缘关系较近,前者应从属中移出,后者应从姬属移出,共同归入仙属或列为仙属的姐妹属。上述结论解决了亚科部分有争议属、种间的进化关系,为亚科分类系统提供了DNA水平证据。  相似文献   

20.
Phylogenetic analyses of Mugilidae species from the China coast were carried out based on 16S and 12S rRNA mitochondrial gene sequences by maximum parsimony, maximum likelihood, Bayesian inference and neighbor joining analysis in the present study. The results suggested that Mugil cephalus is the most genetically divergent species among the Mugilidae. The four Liza species clustered together and formed a monophyletic group. The genera Osteomugil showed closer affiliation with Valamugil than with Ellochelon; these three genera then grouped together to form a monophyletic clade presenting as the sister group to Liza. Analyses of phylogenetic and genetic distance indicated that Southern and Northern lineages of Liza haematocheila may be two different species; likewise, strong genetic divergence existed between Southern and Northern M. cephalus lineages. In addition, our results supported the Southern origin of Chinese Mugilids, which is contrary to the hypothesis based on morphological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号