首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.  相似文献   

2.
Paraquat (PQ; 1,1'-dimethyl-4,4'-bipyridylium dichloride), a widely used herbicide, causes pulmonary edema by a cyclic oxidation and reduction reaction with oxygen molecules with the production of oxygen free radicals. Because fructose 1,6-diphosphate (FDP) has recently been shown to inhibit the generation of oxygen free radicals by activated neutrophils, we determined the effects of FDP on PQ-induced increase in microvascular permeability in isolated blood-perfused dog lungs. Vascular permeability was assessed using the capillary filtration coefficient (Kf,c) and isogravimetric capillary pressure (Pc,i). There was no change in these variables over 5 h in the control lungs treated with saline (n = 5). A significant increase in Kf,c and a decrease in Pc,i, both of which indicated increased vascular permeability, were observed at 5 h of perfusion with 4 x 10(-3) M PQ (n = 5). Unexpectedly, an increase in microvascular permeability occurred within 4 h after administration of PQ in the lungs that were pretreated with FDP (2.7-14.2 mM, n = 6). Moreover the increases of Kf,c in the FDP-pretreated lungs were significantly greater than those in the lungs treated with PQ alone. Also, the final-to-initial lung weight ratio of the FDP-pretreated group was greater than those of the other groups. Thus the FDP dose used in the present study accentuated rather than prevented the PQ lung injury.  相似文献   

3.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

4.
Three independent methods were used to estimate filtration coefficient (Kf) in isolated dog lungs perfused with low-hematocrit (Hct) blood. Pulmonary vascular pressure was increased by 12-23 cmH2O to induce fluid filtration. Average Kf (ml.min-1 x cmH2O-1 x 100 g dry wt-1) for six lungs was 0.26 +/- 0.05 (SE) with use of equations describing conservation of optically measured protein labeled with indocyanine green. Good agreement was found when a simplified version of the multiequation theory was applied to the data (0.24 +/- 0.05). Both optical estimates were lower than those predicted by constant slope (0.55 +/- 0.07) or extrapolation (1.20 +/- 0.15) techniques, which are based on changes in total lung weight. Subsequent studies in five dog lungs investigated whether the higher Kf from weight analyses could be caused by prolonged pulmonary vascular filling. We found that 51Cr-labeled red blood cells (RBCs), monitored over the lung, continued to accumulate for 30 min after vascular pressure elevations of 9-16 cmH2O.Kf was determined by subtracting computed vascular filling from total weight change (0.28 +/- 0.06) and by perfusate Hct changes determined from radiolabeled RBCs (0.23 +/- 0.04). These values were similar to those obtained from analysis of optical data with the complete model (0.30 +/- 0.06), the simplified version (0.26 +/- 0.05), and from optically determined perfusate Hct (0.16 +/- 0.03). However, constant slope (0.47 +/- 0.04) and extrapolation (0.57 +/- 0.07) computations of Kf were higher than estimates from the other methods. Our studies indicate that prolonged blood volume changes may accompany vascular pressure elevations and produce overestimates of Kf with standard weight measurement techniques. However, Kf computed from optical measurements is independent of pulmonary blood volume changes.  相似文献   

5.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

8.
Fluid leaking from arterial and venous extra-alveolar vessels (EAV's) may account for up to 60% of the total transvascular fluid flux when edema occurs in the setting of normal vascular permeability. We determined if the permeability and relative contribution of EAV's was altered after inducing acute lung injury in rabbits by administering oleic acid (0.1 ml/kg) into the pulmonary artery, HCl (5 ml/kg of 0.1 N) into the trachea, or air emboli (0.03 ml.kg-1.min-1) into the right atrium for 90 min. Subsequently, the lungs were excised and continuously weighed while they were maintained in a warmed, humidified chamber with alveolar and pulmonary vascular pressures controlled and the lungs either ventilated or distended with 5% CO2 in air. The vascular system was filled with autologous blood and saline (1:1) to which papaverine (0.1 mg/ml) was added to inhibit vasospasm. Vascular pressures were referenced to the lung base. After a transient hydrostatic stress to maximize recruitment, vascular pressures were set at 5 cmH2O, and lungs were allowed to become isogravimetric (30-60 min). A fluid filtration coefficient (Kf) was determined by the use of a modification of the method of Drake and colleagues [Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266-H274, 1978]. EAV's were isolated by zoning techniques. In control preparations arterial and venous EAV's accounted for 26% (n = 9) and 38% (n = 11) of the total leakage, respectively. In all three models Kf increased two- to fourfold when the lungs were in zone 3 (alveolar vessels and arterial and venous EAV's contributing to the leakage).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The Starling fluid filtration coefficient (Kf) of blood-perfused excised goat lungs was examined before and after infusion of Escherichia coli endotoxin. Kf was calculated from rate of weight gain as described by Drake et al. [Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266-H274, 1978]. These calculations were made twice during base line and then at hourly intervals for 5 h after infusion of 5 mg (approximately 250 micrograms/kg) of E. coli endotoxin or after injection of oleic acid (47 microliter/kg). All lungs were perfused at constant arterial and venous pressure under zone 3 conditions. Base-line Kf averaged 27 +/- 10 and 20 +/- 4 (SD) microliter.min-1.cmH2O-1.g dry wt-1 for endotoxin and oleic acid groups, respectively. It was unchanged in the endotoxin group throughout the experiment but approximately doubled in the oleic acid lungs. Pulmonary arterial and venous pressures were not changed significantly during the course of these experiments in either group. Lung wet-to-dry weight ratios of these lungs were 5.6 +/- 0.6 and 6.1 +/- 0.5 ml/g for the endotoxin and oleic acid groups, respectively. This compares with 4.6 +/- 0.5 ml/g for normal, freshly excised but not perfused goat lungs. The small change in lung water and unchanged pulmonary pressures after both endotoxin and oleic acid suggest that lung injury was minimal. We conclude that 1) endotoxin does not cause a direct injury to the endothelium of isolated lungs during the first 5 h of perfusion, and 2) neutrophils are not sufficient to cause increased Kf after endotoxin infusion in this preparation.  相似文献   

10.
Oleic acid causes pulmonary edema by increasing capillary endothelial permeability, although the mechanism of this action is uncertain. We tested the hypothesis that the damage is an oxidant injury initiated by oleic acid, using isolated blood-perfused canine lung lobes. The lobes were dilated with papaverine and perfused in zone III with a constant airway pressure of 3 cmH2O. Changes in isogravimetric capillary pressure (Pc,i) and capillary filtration coefficient (Kf,C) were used as indices of alterations in microvascular permeability in lungs treated with silicone fluid (n = 3), oleic acid (n = 11), oleic acid after pretreatment with the antioxidants promethazine HCl (n = 11) or N,N'-diphenyl-p-phenylenediamine (DPPD; n = 4), or oleic acid following pretreatment with methylprednisolone (n = 4). Kf,C averaged 0.21 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1 in control and increased to 0.55 +/- 0.05 and 0.47 +/- 0.05 when measured 20 and 180 min after the administration of oleic acid. When oleic acid was infused into lungs pretreated with promethazine, Kf,C increased to only 0.38 +/- 0.05 ml X min-1 X cmH2O-1 X 100 g-1 after 20 min and had returned to control levels by 180 min. Pretreatment with DPPD, but not methylprednisolone, similarly attenuated the increase in Kf,C following oleic acid. Silicone fluid had no effect on Kf,C. That oleic acid increases vascular permeability was also evidenced by a fall (P less than 0.05) in Pc,i from control when measured at 180 min in every group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Oxidative stress due to activated neutrophils, macrophages and endothelial cells plays a crucial role in acute lung injury. This study compares the effects of the nonradical oxidants hypochlorite (HOCl) and hydrogen peroxide (H2O2) on pulmonary artery pressure [PAPtorr], capillary filtration coefficient (Kf,c), tissue lipid peroxidation (LPO) and reduced glutathione (GSH) depletion. HOCl, H2O2 (1000 nmol min(-1)) or buffer (control) is infused into isolated rabbit lungs. PAP, K(f,c) and lung weight were measured. Experiments were terminated after 105 min or when fluid retention exceeded 50 g. Lung tissue was analyzed for LPO products and GSH. The oxidants induced comparable maximum effects. However, the patterns of lung injury were distinct: H2O2 infusion evoked an early biphasic pressure response (DeltaPAPmax 2.8+/-0.22/4.2+/-0.37 after 5.7+/-1.4/39+/-4.0 min) and a sixfold increase in Kf,c after 90 min. HOCl application caused a late pressure response (DeltaPAPmax 7.6+/-1.7 after 50.6+/-3.7 min) and a sevenfold increase in Kf,c after 60 min. H2O2-induced effects were attenuated by desferal. This may suggest an involvement of transition metal catalysed hydroxyl radical formation. Different oxidants induced distinct patterns of changes in PAP and Kf,c , which are accompanied by a comparable accumulation of LPO products and by a distinct degree of GSH depletion.  相似文献   

12.
To study the effects of inflation pressure and tidal volume (VT) on protein permeability in the neonatal pulmonary microcirculation, we measured lung vascular pressures, blood flow, lymph flow (QL), and concentrations of protein in lymph (L) and plasma (P) of 22 chronically catheterized lambs that received mechanical ventilation at various peak inflation pressures (PIP) and VT. Nine lambs were ventilated initially with a PIP of 19 +/- 1 cmH2O and a VT of 10 +/- 1 ml/kg for 2-4 h (base line), after which we overexpanded their lungs with a PIP of 58 +/- 3 cmH2O and a VT of 48 +/- 4 ml/kg for 4-8 h. QL increased from 2.1 +/- 0.4 to 13.9 +/- 5.0 ml/h. L/P did not change, but the ratio of albumin to globulin in lymph relative to the same ratio in plasma decreased, indicating altered protein sieving in the pulmonary microcirculation. Seven other lambs were mechanically ventilated for 2-4 h at a PIP of 34 +/- 1 cmH2O and a VT of 23 +/- 2 ml/kg (base line), after which their chest and abdomen were bound so that PIP increased to 54 +/- 1 cmH2O for 4-6 h without a change in VT. QL decreased on average from 2.8 +/- 0.6 to 1.9 +/- 0.3 ml/h (P = 0.08), and L/P was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To study the mechanical effects of lung edema on the pulmonary circulation, we determined the longitudinal distribution of vascular resistance in the arteries, veins, and microvessels, and the distribution of blood flow in isolated blood-perfused rabbit lungs with varying degrees of edema. Active vasomotor changes were eliminated by adding papaverine to the perfusate. In three groups of lungs with either minimal [group I, mean wet-to-dry weight ratio (W/D) = 5.3 +/- 0.6 (SD), n = 7], moderate (group II, W/D = 8.5 +/- 1.2, n = 10), or severe (group III, W/D = 9.9 +/- 1.6, n = 5) edema, we measured by direct micropuncture the pressure in subpleural arterioles and venules (20-60 micron diam) and in the interstitium surrounding these vessels. We also measured pulmonary arterial and left atrial pressures and lung blood flow, and in four additional experiments we used radio-labeled microspheres to determine the distribution of blood flow during mild and severe pulmonary edema. In lungs with little or no edema (group I) we found that 33% of total vascular pressure drop was in arteries, 60% was in microvessels, and 7% was in veins. Moderate edema (group II) had no effect on total vascular resistance or on the vascular pressure profile, but severe edema (group III) did increase vascular resistance without changing the longitudinal distribution of vascular resistance in the subpleural microcirculation. Perivascular interstitial pressure relative to pleural pressure increased from 1 cmH2O in group I to 2 in group II to 4 in group III lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We investigated whether platelet-activating factor (PAF) increased epithelial or endothelial permeability in isolated-perfused rabbit lungs. PAF was either injected into the pulmonary artery or instilled into the airway of lungs perfused with Tyrode's solution containing 1% bovine serum albumin. The effect of adding neutrophils or platelets to the perfusate was also tested. Perfusion was maintained 20-40 min after adding PAF and then a fluid filtration coefficient (Kf) was determined to assess vascular permeability. At the end of each experiment, one lung was lavaged, and the lavagate protein concentration (BALP) was determined. Wet weight-to-dry weight ratios (W/D) were determined on the other lung. PAF added to the vascular space increased peak pulmonary arterial pressure (Ppa) from 13.5 +/- 3.1 (mean +/- SE) to 24.2 +/- 3.3 cmH2O (P less than 0.05). The effect was amplified by platelets [Ppa to 70.8 +/- 8.0 cmH2O (P less than 0.05)] but not by neutrophils [Ppa to 22.0 +/- 1.4 cmH2O (P less than 0.05)]. Minimal changes in Ppa were observed after instilling PAF into the airway. The Kf, W/D, and BALP of untreated lungs were not increased by injecting PAF into the vasculature or into the air space. The effect of PAF on Kf, W/D, and BALP was unaltered by adding platelets or neutrophils to the perfusate. PAF increases intravascular pressure (at a constant rate of perfusion) but does not increase epithelial or endothelial permeability in isolated-perfused rabbit lungs.  相似文献   

15.
The base-line capillary filtration coefficient (Kf) obtained from rates of lobe weight gain during stepwise vascular pressure elevation is reported to be threefold greater in isolated than in intact dog lung. To further evaluate the stepwise pressure elevation technique, we obtained Kf in control and oleic acid-injured isolated lung. The left lower lung lobe was removed, placed on a balance, ventilated, and pump perfused with autogenous blood. Saline (n = 6) or oleic acid (n = 6) was infused, and rate of lobe weight gain was obtained during stepwise pressure elevation. Kf averaged 0.071 +/- 0.012 and 0.243 +/- 0.027 ml X min-1 X Torr-1 X 100 g-1 in the control and injured lobes, respectively. Stepwise pressure elevation can yield a base-line Kf in isolated lung similar to Kf's obtained from this and other gravimetric methods in intact and isolated lung. Furthermore, Kf increased severalfold following lung injury with oleic acid. The stepwise pressure elevation technique for Kf determination in isolated lung can be a useful tool for quantitating changes in vascular permeability.  相似文献   

16.
The effect of ischemia reperfusion or hypoxia reoxygenation on pulmonary vascular permeability and resistance was studied in 25 isolated blood-perfused dog lungs. Vascular permeability, assessed by determining filtration coefficient (Kf), and vascular resistances were measured at the beginning and end of the experiment. Ischemia reperfusion was produced by occluding blood flow to the lung for 3 h and reperfusing for 1 h, whereas hypoxia reoxygenation was obtained by ventilating the lung with 95% N2-5% CO2 for 3 h and then ventilating with 95% O2-5% CO2 for 1 h with no interruption of perfusion. There was a significant increase in Kf in both ischemia reperfusion and hypoxia reoxygenation groups (51 and 85%, respectively), and total vascular resistance increased greatly in both groups (386 and 532%, respectively). Two additional groups were also studied in which the ischemia reperfusion or hypoxia reoxygenation lungs were pretreated with allopurinol (20 micrograms/ml). The Kf did not significantly increase in either the allopurinol ischemia reperfusion or the allopurinol hypoxia reoxygenation groups (22 and 6%, respectively). However, total vascular resistance significantly increased in both groups (239 and 224%, respectively). Although vascular permeability is modestly increased by both ischemia reperfusion and hypoxia reoxygenation, the predominant change in these conditions is the increased vascular resistance, which predominantly affects the postcapillary resistance and would result in a greater tendency for edema to develop in these slightly damaged lungs. Allopurinol, which inhibits xanthine oxidase, attenuated the permeability changes in both groups and may be useful in preventing ischemia reperfusion injury in certain conditions.  相似文献   

17.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

18.
Capillary pressures in isogravimetric lung and skeletal muscle measured with the double vascular occlusion technique (Pdo) were compared to those measured using the traditional gravimetric technique (Pc,i). Pressures were measured using both techniques in isolated blood-perfused canine lungs (n = 18), blood-perfused rat hindquarters before (n = 8) and after (n = 6) maximal dilatation with papaverine and in rat hindquarters perfused with an artificial plasma (n = 6). In both organs, regardless of vascular tone, the double vascular occlusion isogravimetric pressure was the same as the gravimetric Pc,i, and the two measurements were highly correlated. Lung: Pdo = -0.22 + 1.06 Pc,i (r = 0.85, P less than 0.01); hindquarter: Pdo = -1.03 + 0.99 Pc,i (r = 0.91, P less than 0.01). In addition, Pdo was the same at every combination of isogravimetric arterial and venous pressures tested. The results indicate that the more rapidly applied double vascular occlusion pressure yields an accurate measure of isogravimetric capillary pressure in isolated organs over a wide range of isogravimetric pressures.  相似文献   

19.
In systemic organs, ischemia-reperfusion injury is thought to occur during reperfusion, when oxygen is reintroduced to hypoxic ischemic tissue. In contrast, the ventilated lung may be more susceptible to injury during ischemia, before reperfusion, because oxygen tension will be high during ischemia and decrease with reperfusion. To evaluate this possibility, we compared the effects of hyperoxic ischemia alone and hyperoxic ischemia with normoxic reperfusion on vascular permeability in isolated ferret lungs. Permeability was estimated by measurement of filtration coefficient (Kf) and osmotic reflection coefficient for albumin (sigma alb), using methods that did not require reperfusion to make these measurements. Kf and sigma alb in control lungs (n = 5), which were ventilated with 14% O2-5% CO2 after minimal (15 +/- 1 min) ischemia, averaged 0.033 +/- 0.004 g.min-1.mmHg-1.100 g-1 and 0.69 +/- 0.07, respectively. These values did not differ from those reported in normal in vivo lungs of other species. The effects of short (54 +/- 9 min, n = 10) and long (180 min, n = 7) ischemia were evaluated in lungs ventilated with 95% O2-5% CO2. Kf and sigma alb did not change after short ischemia (Kf = 0.051 +/- 0.006 g.min-1.mmHg-1.100 g-1, sigma alb = 0.69 +/- 0.07) but increased significantly after long ischemia (Kf = 0.233 +/- 0.049 g.min-1 x mmHg-1 x 100 g-1, sigma alb = 0.36 +/- 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号