首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The effects of sulfasalazine (SASP) and its cleavage products 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP) on prostanoid (PG) synthesis and degradation were determined in rabbit colonic mucosa fractions in vitro. When the microsomal fraction was incubated with (14C)arachidonic acid, 10(-3) M SASP and SP did not markedly change the formation of labeled PGE2, PGF2 alpha, TxB2 and 6-keto-PGF1 alpha X 10(-4) M 5-ASA increased synthesis about 2.7-fold; the pattern of PG identified was unaltered. In the presence of the 10-fold higher concentration of 5-ASA, PG synthesis remained elevated at a similar level. When the cytosolic fraction was incubated with (3H)PGE2, 10(-3) M 5-ASA was without influence and 10(-3) M SP decreased slightly PGE2 breakdown. However, SASP showed a pronounced inhibitory effect at 10(-5) M and inhibition of PGE2 degradation was complete at 10(-3) M SASP. The results are compatible with the assumption that stimulation of PG synthesis by 5-ASA is related to therapeutic benefit in the treatment of ulcerative colitis.  相似文献   

2.
Tsai CY  Wu TH  Yu CL  Chou CT 《Life sciences》2000,67(10):1149-1161
Sulfasalazine (SSA) was investigated for its effects on phagocytic activity of normal human polymorphonuclear neutrophils (PMN), proliferation of mononuclear cells (MNC) and cultured glomerular mesangial cells. At concentrations from 25 to 100 microM, it inhibited phagocytic activity of PMN and the 3H-thymidine incorporation of phytohemagglutinin (PHA)-stimulated human MNC in a dose-dependent manner. At comparable concentrations, sulfapyridine and 5-aminosalicylic acid, two of its major metabolites, did not show similar effects. SSA exhibited an inhibitory effect on both mouse and rat mesangial cells but at rather higher concentrations (0.5 mM). Excretion of interleukin (IL)-8 by lipopolysaccharide (LPS)-stimulated PMN was also markedly deterred in a dose-dependent manner but excretion of IL-8 by LPS-stimulated MNC was not interfered by SSA. Production of tumor necrosis factor (TNF)-alpha and IL-1beta by mouse mesangial cells was not blocked by SSA but production of IL-4 by these cells was inhibited by it (>0.1 mM). Inhibition of MNC was not due directly to cytotoxic effect of SSA on these cells as shown by fluorescein diacetate stain. Collectively, SSA inhibits phagocytosis and IL-8 excretion by PMN as well as mitogen-stimulated MNC reaction. On the other hand, at high concentrations, it inhibits glomerular mesangial cells and their IL-4 excretion but not TNF-alpha and IL-1beta excretion. These results can account for minimal nephrotoxic characteristic of SSA and suggest that it may be helpful in the treatment of immune-mediated glomerulonephritis.  相似文献   

3.
ObjectiveWe investigated effects of salazosulfapyridine (SASP) on the protein profile of cell surface (CS)-proteins of SW982, a human synovial sarcoma cell line, using biotinylation of CS-proteins and 2-dimensional fluorescence difference gel electrophoresis (2D-DIGE).MethodsSW982 cells were treated with SASP and its metabolites, sulfapyridine (SP) and 5-aminosalicylic acid (5ASA). Then the cells were treated with a membrane-impermeable biotinylating reagent. Biotinylated CS-proteins were isolated using NeutrAvidin-bound beads. CS-proteins affected by the drugs were detected by 2D-DIGE and subjected to mass spectrometry.ResultsBy the 2D-DIGE analysis, in total 576 spots were detected, 29 out of which showed more than ±1.5-fold different intensity in the SASP-, SP-, and 5ASA-treated cells, compared to non-treated cells (p < 0.05). Interestingly, 7 out of the 29 spots changed their intensity only by SASP and 17 spots changed their intensity only by SP. We identified 9 protein from 15 out of the 29 spots, most of which were evidenced to exist on the cell surface by flow cytometry.ConclusionWe found novel effects of SASP and its metabolites on SW982 cells by the combination of biotinylation of cell surface proteins and 2D-DIGE analysis. These data would help understanding of anti-rheumatic actions of SASP. Furthermore, the combination would be a useful method for the analysis of CS-proteins in various conditions.  相似文献   

4.
Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.  相似文献   

5.
Summary Neutral proteases can be released from PMN neutrophils in blood smears from healthy subjects by incubation with NaCl-borate buffer. The activity of the PMN proteases can be revealed by the degradation of erythrocytes and plasma within ring-shaped areas centered around each neutrophil (halo effect). During the acute stage of various inflammatory diseases (pneumonia, meningitis, cholecystitis, etc.) the activity of neutral PMN proteases is substantially reduced, as reflected by reduced halo formation. After recovery, halo formation returns to normal. Temporary lowering of neutral PMN proteases is thus one of a series of functional defects of PMN neutrophils which are detectable in the course of acute infectious diseases. These include reduced phagocytosis, altered chemotaxis and reduced bactericidal function. The cytochemical test for neutrophilic granulocyte function used in the present investigation is especially practical by comparison with the other techniques: it saves time and is simple to perform.Dedicated to Prof. W. Graumann on the occasion of his 65th birthday  相似文献   

6.
Sulfasalazine produced a dose-dependent inhibition of the enzymatic synthesis of platelet-activating factor (PAF) in lysates of rat pleural neutrophils, with an IC50 of 50 microM. Major metabolites of sulfasalazine, 5-aminosalicylic acid and sulfapyridine, inhibited this enzymatic synthesis at much higher concentrations. Inhibition of arachidonate 5-lipoxygenase by sulfasalazine and its major metabolites was also observed at higher concentrations (2-3 mM). Because PAF is a potent mediator of inflammatory responses, an inhibition of PAF synthesis by sulfasalazine may contribute to its therapeutic actions in conditions such as ulcerative colitis and rheumatic illnesses.  相似文献   

7.
Sulfapyridine (SP) and 5-aminosalicylic acid (5-ASA) are the two primary metabolites of the anti-inflammatory drug salicylazosulfapyridine (SASP). These two metabolites were studied for induction of chromosomal damage in mammalian cells, in vitro and in vivo, in an attempt to understand better the genetic effects produced by SASP in humans and laboratory mice. To this end, SP and 5-ASA were tested for induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Abs) in Chinese hamster ovary (CHO) cells in vitro. In addition, they were tested in vivo for induction of micronuclei (MN) in mouse bone marrow polychromatic erythrocytes (PCE). SP gave positive results in the in vitro SCE test and the in vivo MN test, and negative results in the in vitro Abs test. 5-ASA was negative in all three tests. These results indicate that it is the SP metabolite of SASP that is necessary for the induction of chromosomal damage reported to occur in humans and mice after treatment with SASP.  相似文献   

8.
Reactions of sulfasalazine (SAZ) and its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), with various oxidizing and reducing free radicals (hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophanyl, etc.) have been studied to understand the mechanistic aspects of its action against free radicals produced during inflammation. Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways. The transients produced in these reactions have been assigned and radical scavenging rate constants have been measured. In addition to scavenging of various primary and secondary free radicals by SAZ, 5-ASA and SP, 5-ASA has also been observed to efficiently scavenge radicals of biomolecules. 5-ASA has been found to be the active moiety of SAZ involved in the scavenging of oxidizing free radicals whereas reduction of SAZ produced molecular radical anion. The study suggests that free radical scavenging activity of 5-ASA may be a major path of pharmacological action of SAZ against inflammatory bowel diseases (IBD).  相似文献   

9.
A simple and sensitive liquid chromatography/positive-ion electrospray ionization mass spectrometry (LC-ESI-MS/MS) method has been developed for the simultaneous determination of sulphasalazine (SASP) and its main metabolite sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) with 100 μL of human plasma using dimenhydrinate as the internal standard (I.S.). The API-3000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Protein precipitation process was used to extract SASP, SP, 5-ASA and I.S. from human plasma. The total run time was 9.0 min and the elution of SASP, SP and 5-ASA was at 4.8 min, 2.5 min and 2.0 min, respectively. The separation was achieved with a mobile phase consisting of 0.2% formic acid, 2 mM ammonium acetate in water (mobile phase A) and 0.2% formic acid, 2 mM ammonium acetate in methanol (mobile phase B) by using gradient elution on a XBP Phenyl column (100 mm × 2.1 mm, 5 μm). The developed method was validated in human plasma with a lower limit of quantitation of 10 ng/mL for SASP, SP and 5-ASA, respectively. A linear response function was established for the range of concentrations 10-10,000 ng/mL (r>0.99) for SASP and 10-1000 ng/mL (r>0.99) for SP and 5-ASA. The intra and inter-day precision values for SASP, SP and 5-ASA met the acceptance as per FDA guidelines. SASP, SP and 5-ASA were stable during stability studies, i.e., long term, auto-sampler and freeze/thaw cycles. The method was successfully applied for the evaluation of pharmacokinetics of SASP, SP and 5-ASA after single oral doses of 250 mg SASP to 10 healthy volunteers.  相似文献   

10.
Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16(INK4a), a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16(INK4a) and another cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16(INK4a). Cells induced to senesce by ectopic p16(INK4a) expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16(INK4a) by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16(INK4a) in suppressing the SASP. These findings suggest that p16(INK4a)-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16(INK4a) activation or senescence per se, but rather is a damage response that is separable from the growth arrest.  相似文献   

11.
In association with the systemic inflammatory response syndrome (SIRS), anti-inflammatory response syndrome is commonly manifested in patients with trauma, burn injury, and after major surgery. These patients are increasingly susceptible to infection with various pathogens due to the excessive release of anti-inflammatory cytokines from anti-inflammatory effector cells. Recently, CC-chemokine ligand 2 (CCL2) found in the sera of mice with pancreatitis was identified as an active molecule for SIRS-associated anti-inflammatory response manifestation. Also, the inhibitory activity of glycyrrhizin (GL) on CCL2 production was reported. Therefore, the effect of GL on SIRS-associated anti-inflammatory response manifestation was investigated in a murine SIRS model. Without any stimulation, splenic T cells from mice 5 days after SIRS induction produced cytokines associated with anti-inflammatory response manifestation. However, these cytokines were not produced by splenic T cells from SIRS mice previously treated with GL. In dual-chamber transwells, IL-4-producing cells were generated from normal T cells cultured with peripheral blood polymorphonuclear neutrophils (PMN) from SIRS mice. However, IL-4-producing cells were not generated from normal T cells in transwell cultures performed with PMN from GL-treated SIRS mice. CCL2 was produced by PMN from SIRS mice, while this chemokine was not demonstrated in cultures of PMN from SIRS mice treated with GL. These results indicate that GL has the capacity to suppress SIRS-associated anti-inflammatory response manifestation through the inhibition of CCL2 production by PMN.  相似文献   

12.
Colonic drug delivery is intended not only for local treatment in inflammatory bowel disease (IBD) but also for systemic delivery of therapeutics. Intestinal myeloperoxidase (MPO) determination could be used to estimate the average level of inflammation in colon as well as to determine the efficacy of drugs to be used in the treatment of inflammatory bowel diseases or study the specificity of dosage forms to be used for colonic targeting of anti-inflammatory drugs. Colonic prodrug sulfasalazine (SASP) gets metabolized to give 5-aminosalicylic acid (5-ASA), which is the active portion of SASP. However, when given orally, 5-ASA is absorbed in upper part of gastrointestinal tract (GIT) and not made available in colon. In the present study, colon-targeted delivery of 5-ASA was achieved by formulating tablets with two natural polymers namely guar gum and pectin using compression coating method. Colonic specificity of 5-ASA tablets (prepared using guar gum and pectin as polymers) was evaluated in vitro using simulated fluids mimicking in vivo environment as well as in vivo method using chemically (2,4,6-trinitrobenzenesulfonic acid and acetic acid)-induced colitis rat model. Both colon-specific formulations of 5-ASA (guar gum and pectin) were observed to be more effective in reducing inflammation in chemically induced colitis rat models when compared to colon-specific prodrug sulfasalazine as well as conventional 5-ASA administered orally.KEY WORDS: colitis, colon-specific drug delivery, myeloperoxidase  相似文献   

13.
Activated human neutrophils (PMN) degrade rTNF-alpha resulting in a loss of cytotoxic activity against murine L-929 cells (L cells). This inactivation is mediated through proteases released from activated PMN. Exposure of TNF to H2O2, glucose oxidase, xanthine oxidase, or myeloper-oxidase-H2O2-halide did not affect TNF cytotoxicity for L cells. Exposure to trypsin, chymotrypsin, pronase E, or elastase, however, did diminish TNF bioactivity. FMLP-stimulated PMN in the presence, but not in the absence, of cytochalasin B reduced TNF activity, whereas PMA-stimulated PMN did not affect TNF. Stimulation of PMN with opsonized bacteria also induced TNF inactivation as well as the supernatant of FMLP-stimulated cells. Addition of protease inhibitors to the FMLP-stimulated cytochalasin B-treated PMN abrogated the inactivation of TNF cytotoxicity for L cells, whereas scavengers were not protective. In addition, PMN from a chronic granulomatous disease patient also decreased TNF bioactivity. Inactivation of TNF by activated PMN correlated with granule release and not with superoxide production. Exposure of TNF to proteases and FMLP-activated PMN also resulted in a loss of reactivity with anti-TNF antibodies, as measured by ELISA, and in the formation of an approximately 10-kDa split product from the 17-kDa rTNF molecule. Partial degradation of TNF by proteases released from activated PMN may result in a diminished TNF bioactivity and thereby contribute to the regulation of local inflammatory reactions.  相似文献   

14.
Salicylazosulfapyridine--a drug commonly used in the ulcerative colitis--is effective following both oral and rectal administration. Pharmacokinetics of the drug given per rectum (in the form of suppositories) has not been investigated so far. The present study aims at comparing bioavailability of salicylazosulfapyridine following oral and rectal administration to patients with the ulcerative colitis and healthy volunteers. It was found, that following rectal administration the drug is not so readily absorbed as in oral dosage form. No sulfapyridine and 5-aminosalicylic acid have been detected in blood serum, when the drug was given in the form of rectal suppositories. Clinical stage of the disease did not affect absorption of both unchanged drug and its metabolites. Due to the fact, that the drug is active locally, rectal suppositories seem a therapeutical alternative in patients only with lesions localized in the rectum.  相似文献   

15.
The use of 5-aminosalicylic acid in assessment of reactive oxygen species formation was investigated by in vitro Fenton and ozonation reactions, and by in vivo ozone-exposure experiments. Enzymatic hydroxylation was evaluated by a microsomal assay. Fischer 344 male rats (250 g) injected with 5-aminosalicylic acid (100 mg x kg(-1) i.p.; 30 min) were exposed to ozone (0, 1, 2 ppm; nose only, 2 h); bronchoalveolar lavage, lung homogenates, and plasma were recovered. Oxidation products of 5-aminosalicylic acid were as follows: salicylic acid, by deamination; 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid, from radical or enzymatic hydroxylation; 5-amino-2-hydroxy-N,N'-bis(3-carboxy-4-hydroxyphenyl)-1,4-benzoquinonediimine, a condensation product of oxidized 5-aminosalicylic acid; and 5-amino-2,3,4,6-tetrahydroxybenzoic acid, attributed to hydroxyl radical attack without deamination, identified by HPLC electrochemical (HPLC-EC) detector system analysis and by GC-MS analysis of trimethylsilyl derivatives. 5-Aminotetrahydroxybenzoic acid was not formed enzymatically. 5-Aminotetrahydroxybenzoic acid, but not 5-aminosalicylic acid, was significantly elevated in bronchoalveolar lavage (+86%) and lung homogenates (+56%) in response to 2 ppm ozone (p < 0.05); no significant changes were detected in plasma. The data indicate that hydroxylation of 5-aminosalicylic acid is a potential specific probe for in vivo oxidative stress.  相似文献   

16.
The stable nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was found to be a very potent activator of 5-lipoxygenase in cell-free preparations from rat polymorphonuclear (PMN) leukocytes, causing a 10-fold stimulation of arachidonic acid oxidation at concentrations as low as 0.5-1 microM. The enhancement of enzyme activity was not directly related to G protein activation since the effect of GTP gamma S could not be abolished by GDP nor replaced by GTP or guanylyl-imidodiphosphate (up to 100 microM). Furthermore, other phosphorothioate analogs, such as guanosine 5'-O-(2-thiodiphosphate), adenosine 5'-O-(3-thiotriphosphate), adenosine 5'-O-(2-thiodiphosphate), and adenosine 5'-O-thiomonophosphate all stimulated 5-lipoxygenase activity at concentrations of 10 microM or lower. This effect could not be detected with any of the corresponding nucleoside phosphate derivatives. The stimulation of 5-lipoxygenase activity by nucleoside phosphorothioates was observed under conditions where the reaction is highly dependent on exogenous hydroperoxides, such as in the presence of beta-mercaptoethanol or using enzyme preparations pretreated with sodium borohydride or glutathione peroxidase. GTP gamma S stimulated arachidonic acid oxidation by 5-lipoxygenase to the same extent as the activating hydroperoxides but had no effect on the reaction measured in the presence of optimal concentrations of 13-hydroperoxyoctadecadienoic acid (1-5 microM). Finally, sodium thiophosphate, but not sodium phosphate, markedly stimulated 5-lipoxygenase activity with properties similar to those of GTP gamma S. These results indicate that GTP gamma S and other phosphorothioate derivatives have redox properties that can contribute to increase 5-lipoxygenase activity by replacing the effect of hydroperoxides.  相似文献   

17.
Prostaglandins have been demonstrated to have a mucosal protective effect when administered prior to the experimental induction of colitis in animals. We here determined whether prostaglandins would have a beneficial therapeutic effect when administered after colitis had been established. Diffuse, chronic, trinitrobenzene sulfonic acid-induced colitis was established in rats, and misoprostol was administered daily for up to 10 days following the induction of colitis. The effects of misoprostol therapy were compared to those obtained by treatment with 5-aminosalicylic acid and betamethasone. Misoprostol therapy following trinitrobenzene sulfonic acid-induced colitis accelerated colonic healing, as measured in terms of macroscopic ulceration area and fluid absorption, whereas 5-aminosalicylic acid and betamethasone therapy did not. Ileal fluid absorption impairment was repaired by betamethasone but not by misoprostol or 5-aminosalicylic acid therapy.  相似文献   

18.
We recently demonstrated activation of 5-lipoxygenase activity in human polymorphonuclear leukocytes (PMN) on preincubation of the cells with glutathione-depleting agents, namely 1-chloro-2,4-dinitrobenzene (Dnp-C1) and azodicarboxylic acid bis[dimethylamide] (diamide). In this paper we show that Dnp-C1, but not diamide, impairs the reduction of added organic peroxides in whole PMN. Also, since co-incubation of fatty acid hydroperoxides with arachidonate caused activation of 5-lipoxygenase, we propose that Dnp-C1 increases the peroxide level in PMN which is required for the onset of lipoxygenase activity. This could be substantiated in PMN homogenates by a glutathione-dependent depression of arachidonate 5-lipoxygenation. At higher arachidonate concentrations and in the presence of Ca2+ the glutathione effect was not observed but additional glutathione peroxidase also blocked this maximally stimulated 5-lipoxygenase. Together with other experiments, it became obvious that the formation of leukotrienes, but also of 15-lipoxygenase products, requires a sharply defined threshold level of fatty acid hydroperoxides which are generated by the lipoxygenases and counteracted by glutathione-dependent peroxidase(s). Dnp-C1 influences this equilibrium by removing glutathione and thereby inhibiting glutathione-dependent peroxidase activity. From our data we conclude that it is the physiological function of the peroxidase activity in PMN to determine an efficiently regulated threshold level of hydroperoxide products, below which no activation of 5-lipoxygenase or 15-lipoxygenase can occur.  相似文献   

19.
Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multi-angle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease.  相似文献   

20.
Although prior studies with mAb have defined an endogenous chymotrypsin-like protease in the neutrophil (polymorphonuclear leukocyte (PMN)) membrane that is associated with initiation of superoxide response to inflammatory stimuli, it is not known whether extracellular proteases (in the inflammatory milieu) can also influence PMN activation. This study examined the ability of four neutral proteases: cathepsin G, elastase, chymotrypsin, and trypsin, to modify PMN superoxide response to FMLP, PMA, and arachidonate. In response to 1 microM FMLP, PMN treated with cathepsin G, chymotrypsin, or elastase showed 64%, 60%, and 32% increases, respectively, in superoxide generation when compared with control, untreated cells (p less than 0.05 for each). These increments were dependent on intact enzymatic function of the proteases, were greatest when enzyme and stimulus were added concurrently, and persisted after PMN were washed free of enzyme. Enhancement of superoxide response was not stimulus specific; in response to 10 ng/ml PMA, cells treated with cathepsin G showed a 84%, and elastase a 57%, increase in superoxide generation (p less than 0.05 for both) with a marked reduction in the time required for onset of this response. For cell activation with 80 microM arachidonate, treatment with elastase produced a 180% increase in superoxide production (p less than 0.025). Neutrophils incubated with trypsin demonstrated significant decreases in superoxide response to PMA (-34%, p less than 0.05) and arachidonate (-39%, p less than 0.01). The enzymes themselves were not stimuli for superoxide production nor were they scavengers for superoxide in cellfree system. We conclude that local release of the PMN primary-granule neutral proteases, cathepsin G, and elastase within inflammatory sites can augment neutrophil effector function by up-regulating oxidative response to defined inflammatory stimuli. This autocrine/paracrine function may provide a significant increase in antimicrobial activity, but may also enhance the potential for host tissue injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号