首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Su H  He M  Li H  Liu Q  Wang J  Wang Y  Gao W  Zhou L  Liao J  Young AA  Wang MW 《PloS one》2008,3(8):e2892

Background

Our recent discovery of the substituted cyclobutane Boc5, one of the first non-peptidic agonists at glucagon-like peptide-1 receptors, offers the potential of combining oral availability with full agonism capable of eliciting antidiabetic and antiobesity effects. The present study was aimed at determining the in vivo pharmacologic properties of Boc5 in both normal and diabetic mice following chronic administration, with emphasis on glycemic control and weight loss.

Methodology/Principal Findings

C57BL/6J and db/db mice were treated daily with Boc5 for 4 weeks and a range of pharmacologic parameters, including hemoglobin A1c, intraperitoneal glucose tolerance, insulin tolerance, fasting insulin and leptin levels, food intake, body weight and fat mass, were assessed before and after the treatment. Effects on food intake, gastric emptying, and insulinogenic index were also investigated in animals acutely administered with Boc5. Boc5 (3 mg) was able to induce a durable restoration of glycemic control (normalization of both hemoglobin A1c and intraperitoneal glucose tolerance) in db/db mice, following 4 weeks of daily administration. As with peptidic glucagon-like peptide-1 receptor agonists, its glycemic benefit and weight (fat) loss were associated with dose-dependent effects that included reduction in food intake, slowing of gastric emptying (both of which reduce nutrient-drive at β-cells), stimulation of insulin secretion (which was glucose-dependent), and elevation in insulin sensitivity. There was little effect on normal mice treated in the same manner.

Conclusions/Significance

Our findings suggest that Boc5 is the only non-peptidic molecule reported thus far to simultaneously activate this spectrum of antidiabetic effects.  相似文献   

2.
He M  Su H  Gao W  Johansson SM  Liu Q  Wu X  Liao J  Young AA  Bartfai T  Wang MW 《PloS one》2010,5(12):e14205

Background

Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance.

Methodology/Principal Findings

DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment.

Conclusions/Significance

Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism.  相似文献   

3.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

4.

Objective

Ghrelin acylation by ghrelin O-acyltransferase (GOAT) has recently been reported to be essential for the prevention of hypoglycemia during prolonged negative energy balance. Using a unique set of four different genetic loss-of-function models for the GOAT/ghrelin/growth hormone secretagogue receptor (GHSR) system, we thoroughly tested the hypothesis that lack-of-ghrelin activation or signaling would lead to hypoglycemia during caloric deprivation.

Methodology

Male and female knockout (KO) mice for GOAT, ghrelin, GHSR, or both ghrelin and GHSR (dKO) were subjected to prolonged calorie restriction (40% of ad libitum chow intake). Body weight, fat mass, and glucose levels were recorded daily and compared to wildtype (WT) controls. Forty-eight hour blood glucose profiles were generated for each individual mouse when 2% or less body fat mass was reached. Blood samples were obtained for analysis of circulating levels of acyl- and desacyl-ghrelin, IGF-1, and insulin.

Principal Findings

Chronic calorie restriction progressively decreased body weight and body fat mass in all mice regardless of genotype. When fat mass was depleted to 2% or less of body weight for 2 consecutive days, random hypoglycemic events occurred in some mice across all genotypes. There was no increase in the incidence of hypoglycemia in any of the four loss-of-function models for ghrelin signaling including GOAT KO mice. Furthermore, no differences in insulin or IGF-1 levels were observed between genotypes.

Conclusion

The endogenous GOAT-ghrelin-GHSR system is not essential for the maintenance of euglycemia during prolonged calorie restriction.  相似文献   

5.
Fan R  Kang Z  He L  Chan J  Xu G 《PloS one》2011,6(5):e20443

Aims

Type 2 diabetes is highly prevalent in the elderly population. Glucagon like Peptide-1 mimetic such as exendin-4 augments post-prandial insulin secretion. However, the potential influence of aging on the therapeutic effects of this peptide has not been well studied. In this study, we examined the glucose regulatory effects of exendin-4 in mice with different ages.

Methods

We treated 3-month and 20 to 22-month old C57/DBA mice with 10 nM/kg exendin-4 for 10 days with measurements of blood glucose and body weight. We performed OGTT and ITT to evaluate the glucose response and insulin sensitivity. Islet morphology and beta cell mass were measured by immuno-staining and beta cell proliferation was evaluated by BrdU incorporation and PCNA staining. Real-time PCR and western blot were used to measure protein changes in the liver tissue after exendin-4 treatment.

Results

Exendin-4 treatment improved glycemic control in both 3-month and 20 to 22-month old mice. In both groups of mice, the blood glucose lowering effect was independent of beta cell function as indicated by unchanged beta cell proliferation, insulin secretion or beta cell mass. Moreover, we found that exendin-4 treatment increased hepatic AKT and FOXO1 phosphorylation and inhibited glucose-6-phosphotase (G6P) and Phosphoenolpyruvate carboxykinase (PEPCK) expression in young mice, but this effect was attenuated in aging mice while the insulin sensitivity showed no change in the young group but significantly improved in aging mice.

Conclusion

Based on these data, we conclude that the glucose lowering effect of exendin-4 in normal non-diabetic mice was not blunted by aging. We further showed that although there was slight difference in the glucose modulating mechanism of exendin-4 therapy in young and aged mice, the improved glucose control seemed uncorrelated with increased beta cell mass or insulin secretion.  相似文献   

6.

Background

Despite its insulin sensitizing effects, pioglitazone may induce weight gain leading to an increased risk of development of insulin resistance. A novel sodium glucose co-transporter 2 (SGLT2) inhibitor, canagliflozin, provides not only glycemic control but also body weight reduction through an insulin-independent mechanism. The aim of this study was to investigate the combined effects of these agents on body weight control and insulin sensitivity.

Methods

Effects of combination therapy with canagliflozin and pioglitazone were evaluated in established diabetic KK-Ay mice and prediabetic Zucker diabetic fatty (ZDF) rats.

Results

In the KK-Ay mice, the combination therapy further improved glycemic control compared with canagliflozin or pioglitazone monotherapy. Furthermore, the combination significantly attenuated body weight and fat gain induced by pioglitazone and improved hyperinsulinemia. In the ZDF rats, early intervention with pioglitazone monotherapy almost completely prevented the progressive development of hyperglycemia, and no further improvement was observed by add-on treatment with canagliflozin. However, the combination significantly reduced pioglitazone-induced weight gain and adiposity and improved the Matsuda index, suggesting improved whole-body insulin sensitivity.

Conclusions

Our study indicates that combination therapy with canagliflozin and pioglitazone improves insulin sensitivity partly by preventing glucotoxicity and, at least partly, by attenuating pioglitazone-induced body weight gain in two different obese diabetic animal models. This combination therapy may prove to be a valuable option for the treatment and prevention of obese type 2 diabetes.  相似文献   

7.
Pan A  Sun J  Chen Y  Ye X  Li H  Yu Z  Wang Y  Gu W  Zhang X  Chen X  Demark-Wahnefried W  Liu Y  Lin X 《PloS one》2007,2(11):e1148

Background

Flaxseed consumption has been shown to improve blood lipids in humans and flaxseed-derived lignan has been shown to enhance glycemic control in animals. The study aimed to investigate the effect of a flaxseed-derived lignan supplement on glycemic control, lipid profiles and insulin sensitivity in type 2 diabetic patients.

Methodology/Principal Findings

This was a randomized, double-blind, placebo-controlled, cross-over trial and it was conducted between April and December 2006 in Shanghai, China. Seventy-three type 2 diabetic patients with mild hypercholesterolemia were enrolled into the study. Patients were randomized to supplementation with flaxseed-derived lignan capsules (360 mg lignan per day) or placebo for 12 weeks, separated by an 8-week wash-out period. HbA1c, lipid profiles, insulin resistance index and inflammatory factors were measured. Sixty-eight completed the study and were included in the analyses. The lignan supplement significantly improved glycemic control as measured by HbA1c (-0.10±0.65 % vs. 0.09±0.52 %, P = 0.001) compared to placebo; however, no significant changes were observed in fasting glucose and insulin concentrations, insulin resistance and blood lipid profiles. Urinary excretion of lignan metabolites (enterodiol and enterolactone) was significantly higher after the lignan supplement intervention compared to baseline (14.2±18.1 vs. 1.2±2.4 µg/mL, P<0.001). Data also suggested minimal competition between lignan and isoflavones for bioavailability when measured by the excretion concentrations.

Conclusions/Significance

Daily lignan supplementation resulted in modest, yet statistically significant improvements in glycemic control in type 2 diabetic patients without apparently affecting fasting glucose, lipid profiles and insulin sensitivity. Further studies are needed to validate these findings and explore the efficacy of lignans on type 2 diabetes.

Trial Registration

ClinicalTrials.gov NCT00363233  相似文献   

8.

Background

Pancreatic beta-cells proliferate following administration of the beta-cell toxin streptozotocin. Defining the conditions that promote beta-cell proliferation could benefit patients with diabetes. We have investigated the effect of insulin treatment on pancreatic beta-cell regeneration in streptozotocin-induced diabetic mice, and, in addition, report on a new approach to quantify beta-cell regeneration in vivo.

Methodology/Principal Findings

Streptozotocin-induced diabetic were treated with either syngeneic islets transplanted under the kidney capsule or subcutaneous insulin implants. After either 60 or 120 days of insulin treatment, the islet transplant or insulin implant were removed and blood glucose levels monitored for 30 days. The results showed that both islet transplants and insulin implants restored normoglycemia in the 60 and 120 day treated animals. However, only the 120-day islet and insulin implant groups maintained euglycemia (<200 mg/dl) following discontinuation of insulin treatment. The beta-cell was significantly increased in all the 120 day insulin-treated groups (insulin implant, 0.69±0.23 mg; and islet transplant, 0.91±0.23 mg) compared non-diabetic control mice (1.54±0.25 mg). We also show that we can use bioluminescent imaging to monitor beta-cell regeneration in living MIP-luc transgenic mice.

Conclusions/Significance

The results show that insulin treatment can promote beta-cell regeneration. Moreover, the extent of restoration of beta-cell function and mass depend on the length of treatment period and overall level of glycemic control with better control being associated with improved recovery. Finally, real-time bioluminescent imaging can be used to monitor beta-cell recovery in living MIP-luc transgenic mice.  相似文献   

9.

Background

Good glycemic control reduces the risk of diabetic complications. Despite this, achieving good glycemic control remains a challenge in diabetic patients. The objective of this study is to identify determinants of glycemic control among insulin treated diabetic patients at Jimma University Hospital, Southwest Ethiopia.

Methods

Hospital-based cross-sectional study was conducted on systematically sampled 284 insulin-treated diabetic patients with a regular follow up. Data was collected by interviewing patients during hospital visits and reviewing respective databases of September 2010 to December 2011. Data collection took place from February 20 to May 20, 2012. Poor glycemic control was defined as fasting blood sugar (FBS) ≥126 mg/dL. Binary logistic regression analysis was conducted to identify predictors of poor glycemic control.

Results

Patients had a mean age of 41.37 (±15.08) years, 58.5% were males, the mean duration of insulin treatment was 4.9 (±5.1) years, 18.3% achieved good glycemic control (FBS≤126 mg/dL), 95% self-reported repeated use of disposable insulin syringe-needle and 48% correctly rotating insulin injection sites. Most (83.1%) of study participants had one or more complications. On multivariable logistic regression analyses, body weight of >70 Kg (AOR = 0.21; P<0.001), total daily dose of insulin ≤35 IU/day (AOR = 0.26; P<0.001), total daily dose variation without checking glycemic level (AOR = 3.39; P = 0.020), knowledge deficit about signs and symptoms of hyperglycemia (AOR = 3.60; P = 0.004), and non-adherence to dietary management (AOR = 0.35; P = 0.005) were independent predictors of poor glycemic control.

Conclusions

The proportion of patients with poor glycemic control was high, which resulted in the development of one or more complications regardless of duration on insulin treatment. Hence, appropriate management of patients focusing on the relevant associated factors and independent predictors of poor glycemic control would be of great benefit in glycemic control.  相似文献   

10.

Background

Insulin resistance impairs nitric oxide (NO) bioavailability and obesity promotes a state of chronic inflammation and damages the vascular endothelium. Phosphodiesterase-5 inhibitors restore NO signaling and may reduce circulating inflammatory markers, and improve metabolic parameters through a number of mechanisms. We hypothesized that daily administration of the PDE-5 inhibitor, tadalafil (TAD) will attenuate inflammation, improve fasting plasma glucose and triglyceride levels, body weight, and reduce infarct size after ischemia/reperfusion injury in obese, diabetic mice.

Methods

Twenty leptin receptor null (db/db) mice underwent treatment with TAD (1 mg/Kg) or 10% DMSO for 28 days. Body weight and fasting plasma glucose levels were determined weekly. Upon completion, hearts were isolated and subjected to 30 min global ischemia followed by 60 min reperfusion in a Langendorff model. Plasma samples were taken for cytokine analysis and fasting triglyceride levels. Infarct size was measured using computer morphometry of tetrazolium stained sections. Additionally, ventricular cardiomyocytes were isolated and subjected to 40 min of simulated ischemia and reoxygenation. Necrosis was determined using trypan blue exclusion and LDH release assay and apoptosis was assessed by TUNEL assay after 1 h or 18 h of reoxygenation, respectively.

Results

Treatment with TAD caused a reduction in infarct size in the diabetic heart (23.2±1.5 vs. 47.8±3.7%, p<0.01, n = 6/group), reduced fasting glucose levels (292±31.8 vs. 511±19.3 mg/dL, p<0.001) and fasting triglycerides (43.3±21 vs. 129.7±29 mg/dL, p<0.05) as compared to DMSO, however body weight was not significantly reduced. Circulating tumor necrosis factor-α and interleukin-1β were reduced after treatment compared to control (257±16.51 vs. 402.3±17.26 and 150.8±12.55 vs. 264±31.85 pg/mL, respectively; P<0.001) Isolated cardiomyocytes from TAD-treated mice showed reduced apoptosis and necrosis.

Conclusion

We have provided the first evidence that TAD therapy ameliorates circulating inflammatory cytokines and chemokines in a diabetic animal model while improving fasting glucose levels and reducing infarct size following ischemia-reperfusion injury in the heart.  相似文献   

11.

Background

Evidence favours insulin resistance and compensatory hyperinsulinemia as the predominant, perhaps primary, defects in polycystic ovary syndrome (PCOS). The aim of the present study was to evaluate insulin metabolism in young women with PCOS but normal glucose tolerance as compared with age, body mass index and insulin resistance-matched controls to answer the question whether women with PCOS hypersecrete insulin in comparison to appropriately insulin resistance-matched controls.

Research Design and Methods

Sixty-nine cases were divided according to their body mass index (BMI) in normal-weight (N = 29), overweight (N = 24) and obese patients (N = 16). Controls were 479 healthy women (age 16–49 y). Whole body Insulin Sensitivity (WBISI), fasting, and total insulin secretion were estimated following an oral glucose tolerance test (C-peptide deconvolution method).

Results

Across classes of BMI, PCOS patients had greater insulin resistance than matched controls (p<0.0001 for all the comparisons), but they showed higher fasting and total insulin secretion than their age, BMI and insulin resistance-matched peers (p<0.0001 for all the comparisons).

Conclusion

Women with PCOS show higher insulin resistance but also larger insulin secretion to maintain normal glucose homeostasis than age-, BMI- and insulin resistance-matched controls.  相似文献   

12.

Objective

Cigarette smoking is an important modifiable risk factor for cardiovascular diseases. However, the effect of smoking and its cessation on glycemic control in diabetic patients has not been fully examined yet. The aim of the present study was to examine the association of smoking status with glycemic level and markers of insulin resistance and secretion in patients with type 2 diabetes mellitus.

Research Design and Methods

A total of 2,490 Japanese male patients with type 2 diabetes mellitus aged ≥20 years were divided according to smoking status, amount of cigarettes smoked and years since quitting. The associations with glycemic level and markers of insulin resistance and secretion were examined cross-sectionally.

Results

HbA1c levels increased progressively with increases in both number of cigarettes per day and pack-years of cigarette smoking compared with never smokers (P for trend = 0.001 and <0.001, respectively), whereas fasting plasma glucose did not. On the other hand, HbA1c, but not fasting plasma glucose, decreased linearly with increase in years after smoking cessation (P for trend <0.001). These graded relationships persisted significantly after controlling for the confounders, including total energy intake, current drinking, regular exercise, depressive symptoms, and BMI. In addition, a homeostasis model assessment of insulin resistance and high-sensitivity C-reactive protein also showed similar trends.

Conclusions

Smoking and its cessation showed dose- and time-dependent relationship with glycemic control and insulin resistance in patients with type 2 diabetes mellitus. These findings may highlight the importance of smoking cessation in the clinical management of diabetes mellitus.  相似文献   

13.

Introduction

Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice.

Methods

The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay.

Results

In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes.

Conclusion

Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.  相似文献   

14.

Background

Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice.

Methods

Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9–10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation.

Results

Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice.

Conclusions

Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.  相似文献   

15.

Background

Complement-C1q TNF-related protein 1 (CTRP1), a member of the CTRP superfamily, possesses anti-inflammatory and anti-diabetic effects in mice. However, the clinical relevance of CTRP1 has been seldom explored. The current study aimed to investigate the association of circulating CTRP1 and type 2 diabetes mellitus (T2DM) in a Chinese population.

Design and Methods

Serum CTRP1 and adiponectin levels of 96 T2DM patients and 85 healthy subjects were determined by ELISA, and their associations with adiposity, glucose and lipid profiles were studied. In a subgroup of this study, the 75-g oral glucose tolerance test (OGTT) was performed in 20 healthy and 20 T2DM subjects to evaluate the relationship among serum levels of CTRP1 and adiponectin, insulin secretion and insulin sensitivity.

Results

Serum CTRP1 levels were significantly increased in patients with T2DM, compared with healthy controls (p<0.001). Similar to adiponectin, serum levels of CTRP1 were significantly correlated to several parameters involved in glucose metabolism and insulin resistance, and independently associated with fasting glucose levels (p<0.05) after BMI and gender adjustments. Furthermore, CTRP1 levels were positively correlated to insulin secretion, while negatively to insulin sensitivity, as measured by OGTT.

Conclusion

CTRP1 is a novel adipokine associated with T2DM in humans. The paradoxical increase of serum CTRP1 levels in T2DM subjects may be due to a compensatory response to the adverse glucose and lipid metabolism, which warrants further investigation.  相似文献   

16.

Background

The association of obstructive sleep apnea (OSA) with glucose intolerance and the beneficial effect of lifestyle intervention have been poorly investigated in women particularly before menopausal status. The study explored 1) whether OSA is associated with impaired glucose homeostasis in obese non diabetic premenopausal and menopausal women and 2) the effects of a 3- month lifestyle intervention on glucose homeostasis in OSA women.

Design and Methods

We consecutively recruited 98 obese women (39 premenopausal) from those referred for a weight loss intervention. Ambulatory nocturnal polysomnography, body composition, oral glucose tolerance test, insulin sensitivity and β cell function were assessed before and after intervention.

Results

41% of premenopausal and 64% of menopausal women had OSA which was associated with worse glucose homeostasis before menopausal status. Mean and minimal nocturnal oxygen saturation (SaO2) was associated with neck/height ratio (NHR), independently of total and central obesity. Mean and minimal nocturnal SaO2 and NHR were correlated with insulin sensitivity and fasting glucose. In multivariate analyses, nocturnal mean SaO2 was negatively and independently correlated with fasting glucose (p<0.0001) and NHR with insulin sensitivity (p<0.0001). In OSA women, the intervention induced a 5% weight reduction and a significant increase in minimal nocturnal SaO2, insulin sensitivity and β cell function. Changes in fasting glucose and insulin sensitivity were associated with those in minimal nocturnal SaO2 (p<0.05) and not with weight loss.

Conclusions

In obese women, glucose homeostasis worsens due to nocturnal hypoxia and increased neck circumference through mechanisms partially independent of obesity. OSA is more clearly associated with glucose intolerance in premenopausal than in menopausal women. In OSA women, the improvement of nocturnal hypoxia induced by lifestyle modifications is associated with that of glucose homeostasis.  相似文献   

17.

Background

Obesity and associated hormonal disturbances are risk factors for colon cancer. Cytosolic Malic Enzyme (ME1) generates NADPH used for lipogenesis in gastrointestinal (GI), liver and adipose tissues. We have reported that inclusion of soy protein isolate (SPI) in the diet lowered body fat content and colon tumor incidence of rats fed AIN-93G diet, while others have demonstrated SPI inhibition of rat hepatic ME1 expression. The present study examined the individual and combined effects of dietary SPI and absence of ME1 on: 1) serum concentrations of hormones implicated in colon cancer development, 2) expression of lipogenic and proliferation-associated genes in the mouse colon and small intestine, and 3) liver and adipose expression of lipogenic and adipocytokine genes that may contribute to colon cancer predisposition.

Methods

Weanling wild type (WT) and ME1 null (MOD-1) male mice were fed high-fat (HF), iso-caloric diets containing either casein (CAS) or SPI as sole protein source for 5 wks. Somatic growth, serum hormone and glucose levels, liver and adipose tissue weights, GI tissue parameters, and gene expression were evaluated.

Results

The MOD-1 genotype and SPI-HF diet resulted in decreases in: body and retroperitoneal fat weights, serum insulin, serum leptin, leptin/adiponectin ratio, adipocyte size, colon mTOR and cyclin D1 mRNA abundance, and jejunum FASN mRNA abundance, when compared to WT mice fed CAS-HF. Regardless of diet, MOD-1 mice had reductions in liver weight, liver steatosis, and colon crypt depth, and increases in adipose tissue expression of IRS1 and IRS2, compared to WT mice. SPI-HF diet reduced ME1 gene expression only in retroperitoneal fat.

Conclusions

Data suggest that the pharmacological targeting of ME1 or the inclusion of soy protein in the diet may provide avenues to reduce obesity and its associated pro-tumorigenic endocrine environment and improve insulin sensitivity, potentially disrupting the obesity-colon cancer connection.  相似文献   

18.

Background

Dietary factors play an important role in glycemic control in diabetic patients. However, little is known about their effects among Chinese diabetic patients, whose diets are typically abundant in fiber and high in glycemic index (GI) values.

Methodology/Principal Findings

934 patients with type 2 diabetes and 918 healthy volunteers from Pudong New Area, Shanghai, China, were interviewed during the period of Oct-Dec, 2006 to elicit demographic characteristics and lifestyle factors. Dietary habits were assessed using a validated food frequency questionnaire. Anthropometric measurements, bio-specimen collection and biochemical assays were conducted at the interview according to a standard protocol. In this population, diabetic patients consumed lower levels of energy and macronutrients but had higher levels of fasting plasma glucose (FPG), glycolated hemoglobin A1c (HbA1c), triglyceride and body mass index than healthy adults. While the average consumption levels of the nutrients among diabetic patients did not vary along duration of the disease, the average levels of FPG and HbA1c increased with increasing duration. Regardless of diabetes duration, HbA1c level was observed lower in patients having a higher fiber or lower GI intake. Compared with those with the lowest tertile intake of fiber, the adjusted odds ratios (ORs) for poor glycemic control reduced from 0.75 (95%CI: 0.54–1.06) to 0.51 (95%CI: 0.34–0.75) with increasing tertile intake (P for trend <0.001).

Conclusions

Dietary fiber may play an important role in reducing HbA1c level. Increasing fiber intake may be an effective approach to improve glycemic control among Chinese diabetic patients.  相似文献   

19.
Li Y  Tong X  Rumala C  Clemons K  Wang S 《PloS one》2011,6(10):e26656

Background

Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.

Methodology/Principal Findings

Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat (HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.

Conclusion

TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic target to improve the inflammatory and metabolic complications of obesity.  相似文献   

20.

Aims/Hypothesis

Several studies have shown that adiponectin can lower blood glucose in diabetic mice. The aim of this study was to establish an effective adiponectin production process and to evaluate the anti-diabetic potential of the different adiponectin forms in diabetic mice and sand rats.

Methods

Human high molecular weight, mouse low molecular weight and mouse plus human globular adiponectin forms were expressed and purified from mammalian cells or yeast. The purified protein was administered at 10–30 mg/kg i.p. b.i.d. to diabetic db/db mice for 2 weeks. Furthermore, high molecular weight human and globular mouse adiponectin batches were administered at 5–15 mg/kg i.p. b.i.d. to diabetic sand rats for 12 days.

Results

Surprisingly, none of our batches had any effect on blood glucose, HbA1c, plasma lipids or body weight in diabetic db/db mice or sand rats. In vitro biological, biochemical and biophysical data suggest that the protein was correctly folded and biologically active.

Conclusions/Interpretation

Recombinant adiponectin is ineffective at lowering blood glucose in diabetic db/db mice or sand rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号