首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary history of the enolase gene family   总被引:4,自引:0,他引:4  
Tracy MR  Hedges SB 《Gene》2000,259(1-2):129-138
The enzyme enolase [EC 4.2.1.11] is found in all organisms, with vertebrates exhibiting tissue-specific isozymes encoded by three genes: alpha (alpha), beta (beta), and gamma (gamma) enolase. Limited taxonomic sampling of enolase has obscured the timing of gene duplication events. To help clarify the evolutionary history of the gene family, cDNAs were sequenced from six taxa representing major lineages of vertebrates: Chiloscyllium punctatum (shark), Amia calva (bowfin), Salmo trutta (trout), Latimeria chalumnae (coelacanth), Lepidosiren paradoxa (South American lungfish), and Neoceratodus forsteri (Australian lungfish). Phylogenetic analysis of all enolase and related gene sequences revealed an early gene duplication event prior to the last common ancestor of living organisms. Several distantly related archaebacterial sequences were designated as 'enolase-2', whereas all other enolase sequences were designated 'enolase-1'. Two of the three isozymes of enolase-1, alpha- and beta-enolase, were discovered in actinopterygian, sarcopterygian, and chondrichthian fishes. Phylogenetic analysis of vertebrate enolases revealed that the two gene duplications leading to the three isozymes of enolase-1 occurred subsequent to the divergence of living agnathans, near the Proterozoic/Phanerozoic boundary (approximately 550Mya). Two copies of enolase, designated alpha(1) and alpha(2), were found in the trout and are presumed to be the result of a genome duplication event.  相似文献   

2.
 Upon bacterial infection, insects secrete a set of synthesized antibacterial proteins into the hemolymph and initiate synergistic destruction of invaders. Cecropin is one such antibacterial protein which is also found in vertebrates. To study the evolutionary history and mechanism of the Cecropin gene family, we determined DNA sequences of one isogenic In(3R)C and six isofemale lines of Drosophila melanogaster as well as one line of D. simulans and of D. yakuba. The phylogenetic analysis of these sequences together with those published for D. virilis and Sarcophaga peregrina reveals frequent gene re-organization. It was also found that silent nucleotide differences within D. melanogaster are quite heterogeneous across the gene region of approximately 3 kilobases and the extent of polymorphism is unusually usually high. These data suggest that the Cecropin gene region of D. melanogaster underwent intragenic recombination as well as introgression from a closely related sibling species, D. simulans. Received: 31 July 1997 / Revised: 24 October 1997  相似文献   

3.
4.

Background  

The Poly(ADP-ribose)polymerase (PARP) superfamily was originally identified as enzymes that catalyze the attachment of ADP-ribose subunits to target proteins using NAD+ as a substrate. The family is characterized by the catalytic site, termed the PARP signature. While these proteins can be found in a range of eukaryotes, they have been best studied in mammals. In these organisms, PARPs have key functions in DNA repair, genome integrity and epigenetic regulation. More recently it has been found that proteins within the PARP superfamily have altered catalytic sites, and have mono(ADP-ribose) transferase (mART) activity or are enzymatically inactive. These findings suggest that the PARP signature has a broader range of functions that initially predicted. In this study, we investigate the evolutionary history of PARP genes across the eukaryotes.  相似文献   

5.
Identification of a new, unorthodox member of the MAGE gene family.   总被引:4,自引:0,他引:4  
Several tumor-associated antigen families, such as MAGE, GAGE/PAGE, PRAME, BAGE, and LAGE/NY-ESO-1, exist. These antigens are of particular interest in tumor immunology, because their expression, with exception of testis and fetal tissues, seems to be restricted to tumor cells only. We have identified a novel member of the MAGE gene family, MAGED1. Northern hybridization and RT-PCR demonstrated that the expression level of MAGED1 in different normal adult tissues is comparable to that in testis and fetal liver. Thus, MAGED1 does not possess an expression pattern characteristic of previously identified MAGE family genes, suggesting that the biology of the MAGE-family genes is more complex than previously thought. Chromosome mapping linked MAGED1 to marker AFM119xd6 (DXS1039) on chromosome Xp11.23.  相似文献   

6.
Li M  Liu J  Zhang C 《PloS one》2011,6(10):e26999

Background

The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.

Methodology/Principal Findings

The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.

Conclusions/Significance

These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.  相似文献   

7.
Several distinct families of endogenous retrovirus-like elements (ERVs) exist in the genomes of primates. Despite the important evolutionary consequences that carrying these intragenomic parasites may have for their hosts, our knowledge about their evolution is still scarce. A matter of particular interest is whether evolution of ERVs occurs via a master lineage or through several lineages coexisting over long periods of time. In this work, the paleogenomic approach has been applied to the study of the evolution of ERV9, one of the human endogenous retrovirus families mobilized during primate evolution. By searching the GenBank database with the first 676 bp of the ERV9 long terminal repeat, we identified 156 different element insertions into the human genome. These elements were grouped into 14 subfamilies based on several characteristic nucleotide differences. The age of each subfamily was roughly estimated based on the average sequence divergence of its members from the subfamily consensus sequence. Determination of the sequential order of diagnostic substitutions led to the identification of four distinct lineages, which retained their capacity of transposition over extended periods of evolution. Strong evidence for mosaic evolution of some of these lineages is presented. Taken altogether, the available data indicate that the possibility of ERV9 still being active in the human lineage can not be discarded.  相似文献   

8.
Trypanosoma cruzi, the agent of Chagas disease is associated with a very high clinical and epidemiological pleomorphism. This might be better understood through studies on the evolutionary history of the parasite. We explored here the value of antigen genes for the understanding of the evolution within T. cruzi. We selected 11 genes and 12 loci associated with different functions and considered to be involved in host-parasite interaction (cell adhesion, infection, molecular mimicry). The polymorphism of the respective genes in a sample representative of the diversity of T. cruzi was screened by PCR-RFLP and evolutionary relationships were inferred by phenetic analysis. Our results support the classification of T. cruzi in 2 major lineages and 6 discrete typing units (DTUs). The topology of the PCR-RFLP tree was the one that better fitted with the epidemiological features of the different DTUs: (i) lineage I, being encountered in sylvatic as well as domestic transmission cycles, (ii) IIa/c being associated with a sylvatic transmission cycle and (iii) IIb/d/e being associated with a domestic transmission cycle. Our study also supported the hypothesis that the evolutionary history of T. cruzi has been shaped by a series of hybridization events in the framework of a predominant clonal evolution pattern.  相似文献   

9.
GH3 amino acid conjugases have been identified in many plant and bacterial species. The evolution of GH3 genes in plant species is explored using the sequenced rosids Arabidopsis, papaya, poplar, and grape. Analysis of the sequenced non-rosid eudicots monkey flower and columbine, the monocots maize and rice, as well as spikemoss and moss is included to provide further insight into the origin of GH3 clades. Comparison of co-linear genes in regions surrounding GH3 genes between species helps reconstruct the evolutionary history of the family. Combining analysis of synteny with phylogenetics, gene expression and functional data redefines the Group III GH3 genes, of which AtGH3.12/PBS3, a regulator of stress-induced salicylic acid metabolism and plant defense, is a member. Contrary to previous reports that restrict PBS3 to Arabidopsis and its close relatives, PBS3 syntelogs are identified in poplar, grape, columbine, maize and rice suggesting descent from a common ancestral chromosome dating to before the eudicot/monocot split. In addition, the clade containing PBS3 has undergone a unique expansion in Arabidopsis, with expression patterns for these genes consistent with specialized and evolving stress-responsive functions.  相似文献   

10.
11.
12.
Evolutionary origins of the transforming growth factor-beta gene family.   总被引:1,自引:0,他引:1  
A molecular phylogeny for the transforming growth factor-beta (TGF-beta) gene family based on a comparison of nucleotide sequences is proposed. A phylogenetic tree constructed from these sequences shows that the family evolved from a common ancestral gene that came into existence at about the time of arthropod and chordate divergence. This model suggests that the present day TGF-beta gene family consists of four members: TGF-beta 1 (= TGF-beta 4), TGF-beta 2, TGF-beta 3, and TGF-beta 5. The molecular phylogeny and Southern hybridization data also suggest that the proteins for mammalian TGF-beta 1 and chicken TGF-beta 4 are the products of homologous rather than duplicated genes. If the gene duplication event that produced the ancestral gene for TGF-beta 1 occurred before the divergence of birds and mammals, then sufficient time would have elapsed to generate these quite distinct avian and mammalian TGF-beta 1 proteins. Therefore, the TGF-beta family contains four distinct proteins, TGF-beta 1, 2, 3, and 5.  相似文献   

13.
Evolutionary conservation of gene structures of the Pax1/9 gene family   总被引:1,自引:0,他引:1  
Based on amino acid sequence comparisons, Pax1 and Pax9 genes are considered to form a subgroup of vertebrate Pax genes. We show here that the gene structures of mouse Pax1, human PAX9 genes are similar to that of a single Pax1/9 related gene in Branchiostoma lanceolatum, AmphiPax1. This supports the hypothesis that Pax1 and Pax9 genes were derived from a single ancestral gene. A refined protein alignment of AmphiPax1, mouse Pax1 and human PAX9 proteins based on the determined exon boundaries indicates that sequence divergence at the C-termini may be related to the unique functions of the Pax1 and Pax9 genes in vertebrates. AmphiPax1 is expressed in adult amphioxus in the pharyngeal endoderm.  相似文献   

14.
TheArtemia hemoglobin contains two sub-units that are similar or different chains of nine globin domains. The domains are ancestrally related and are presumed to be derived from copies of an original single-domain parent gene. Since the gene copies have remained in the same environment for several hundred million years they provide an excellent model for the investigation of intron stability. The cDNA for one of the two types of nine-domain subunit (domains T1–T9) has been sequenced. Comparison with the corresponding genomic DNA reveals a total of 17 intradomain introns. Fourteen of the introns are in locations on the protein that are conventional in globins of other species. In eight of the nine domains an intron corresponds to the B helix, amino acid B12, following the second nucleotide (phase 2), and in six domains a G-helix intron is located between G6 and G7 (phase 0). The consistency of this pattern is supportive of the introns having been inherited from a single-domain parent gene. The remaining three introns are in unconventional locations. Two occur in the F helix, either in amino acid F3 (phase 1) in domain T3, or between F2 and F3 (phase 0) in domain T6. The two F introns strengthen an interpretation of intron inheritance since globin F introns are rare, and in domains T3 and T6 they replace rather than supplement the conventional G introns, as though displacement from G to F occurred before that part of the gene became duplicated. It is inferred that one of the F introns subsequently moved by one nucleotide. Similarly, the third unconventional intron location is the G intron in domain T4 which is in G6, phase 2, one nucleotide earlier than the other G introns. Domain T4 is also unusual in lacking a B intron. The pattern of introns in theArtemia globin gene supports a concept of general positional stability but the exceptions, where introns have moved out of reading frame, or have moved by several codons, or have been deleted, suggest that intron displacements can occur after inheritance from an ancient source. Correspondence to: C.N.A. Trotman  相似文献   

15.
We have cloned 26 different class I genes that are located in the major histocompatibility complex of the C57BL/10 mouse. Two of the three class I genes found in the H-2 complex encode the H-2Kb and H-2Db antigens; the other 23 class I genes map to the adjacent Tla complex. We have grouped the cosmids containing these genes into three clusters: one cluster links the H-2K and I-A regions, one cluster links the H-2D and Qa-2 regions, and the final cluster maps to the TL region. The class I gene organizations in the Qa-2 and TL regions of the C57BL/10 and BALB/c mice are generally similar, but there are several polymorphic segments. The Qa-2 region of both mice seems to have evolved by the duplication of gene pairs; furthermore, the H-2K region may have been generated by the translocation of a gene pair from the Qa-2 region. We have evidence that several of the genes in the Qa-2 region are expressed.  相似文献   

16.
17.
Evolutionary history of the grasses   总被引:45,自引:0,他引:45  
Kellogg EA 《Plant physiology》2001,125(3):1198-1205
  相似文献   

18.
Evolutionary history of the Coccolithoviridae   总被引:1,自引:0,他引:1  
We recently determined the genome sequence of the Coccolithoviridae strain Emiliania huxleyi virus 86 (EhV-86), a giant double-stranded DNA (dsDNA) algal virus from the family Phycodnaviridae that infects the marine coccolithophorid E. huxleyi. Here, we determine the phylogenetic relationship between EhV-86 and other large dsDNA viruses. Twenty-five core genes common to nuclear-cytoplasmic large dsDNA virus genomes were identified in the EhV-86 genome; sequence from eight of these genes were used to create a phylogenetic tree in which EhV-86 was placed firmly with the two other members of the Phycodnaviridae. We have also identified a 100-kb region of the EhV-86 genome which appears to have transferred into this genome from an unknown source. Furthermore, the presence of six RNA polymerase subunits (unique among the Phycodnaviridae) suggests both a unique evolutionary history and a unique lifestyle for this intriguing virus.  相似文献   

19.
Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) form the CBL-CIPK complexes, perceiving calcium signals and relaying the signals to downstream responses in plants. To further understand the CBL-CIPK signaling system, here we focused on the evolutionary analysis of CIPKs. We re-evaluated eight plant genomes and identified 146 CIPKs, providing several new CIPKs in rice and poplar. A phylogenetic tree was constructed, showing that these 146 CIPKs are grouped into intron-rich and intron-less clades. Furthermore, all the CIPKs from the non-angiosperm species were found in intron-rich clade. We identified 30 conserved protein motifs among these 146 CIPKs. Analysis of gene duplication showed that the expansion of CIPKs in both clades is partly contributed by segmental duplications, however, tandem duplicates were found only in intron-less clade. Ka/Ks ratios showed that CIPK genes have experienced purifying selective pressure. Additionally, clustering of gene expression revealed that some CIPK genes in two clades share similar expression patterns under abiotic stresses and four CIPKs in intron-less clade form a distinct cluster (i.e., different expression patterns), suggesting the complexity of CIPK gene expression under abiotic stresses. Taken together, our results provided some new insights into the evolution of CIPKs and the hint that the expansion of CIPKs in intron-less clade is adaptive to environmental stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号