共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial sequences of the nuclear gene encoding the photoreceptor phytochrome A (PHYA) are used to reconstruct relationships within Orobanchaceae, the largest of the parasitic angiosperm families. The monophyly of Orobanchaceae, including nonphotosynthetic holoparasites, hemiparasites, and nonparasitic Lindenbergia is strongly supported. Phytochrome A data resolve six well-supported lineages that contain all of the sampled genera except Brandisia, which is sister to the major radiation of hemiparasites. In contrast to previous plastid and ITS trees, relationships among these major clades also are generally well supported. Thus, the robust phylogenetic hypothesis inferred from the PHYA data provides a much better context in which to evaluate the evolution of parasitism within the group. Ninety-eight species of Orobanchaceae, representing 43 genera, are included and Brandisia, Bungea, Cymbaria, Esterhazya, Nesogenes, Phtheirospermum, Radamaea, Siphonostegia, and Xylocalyx are confirmed as members of Orobanchaceae. The earliest diverging lineage of hemiparasites is identified for the first time; it contains Bungea, Cymbaria, Monochasma, Siphonostegia, and the monotypic Schwalbea, which is federally endangered. This basal clade is marked by the presence of two novel introns. A second, apparently independent gain of one of these introns marks a clade of largely European taxa. There is significant rate heterogeneity among PHYA sequences, and the presence of multiple PHYA in some taxa is consistent with observed ploidy levels. 相似文献
2.
Shimizu K Tanaka C Peng YL Tsuda M 《The Journal of General and Applied Microbiology》1998,44(4):251-258
The Brn1 reductase melanin biosynthesis gene in the fungal genus Bipolaris was sequenced in 74 strains of 22 species. The Brn1 region was highly conserved among the species examined at the nucleotide and the amino acid levels. To elucidate the phylogenetic relationships among Bipolaris species, trees were inferred from nucleotide sequences of this region. Species in these trees formed exclusive clusters clearly separated from one another, except for B. panici-miliacei and B. setariae, and B. victoriae and B. zeicola. When unidentified strains were added to this tree, they fell within known species or formed independent clusters. These data indicated that the Brn1 gene region was suitable for species-level systematics within the genus. The results also suggest that Bipolaris consists of two or more clades that may reflect teleomorphic connections. 相似文献
3.
4.
This is the first comprehensive molecular investigation of the genus Celastrus L. Phylogenetic relationships within the genus were assessed based on sequences of two nuclear (ETS, ITS) and three plastid (psbA-trnH, rpl16 and trnL-F) regions using the Bayesian inference and the maximum parsimony methods. Our results show that Celastrus, together with Tripterygium, formed a maximal supported clade. Within the cluster, Celastrus is composed of a basal clade and a core Celastrus clade, and the latter is consisted of six subclades. Relationships among species are more influenced by latitude than continental distribution patterns. The cauline cyme and lunate seeds are distinct characters to one of the maximal supported subclades. Their close relationship, similar geographical pattern and habitat imply that C. flagellaris may be a potential invasive species threatening C. scandens in North America. Celastrus leiocarpus, C. oblanceifolius and C. rugosus are confirmed as synonyms of C. punctatus, C. aculeatus and C. glaucophyllus, respectively. Discordance between the molecular data and previous morphology-based subgeneric classifications are noted. More works are needed to clarify the relationship between Celastrus and Tripterygium and the species within Celastrus. 相似文献
5.
Despite the fact that Bicyclus anynana has become an important model species for wing-pattern developmental biology and studies of phenotypic plasticity, little is known of the evolutionary history of the genus Bicyclus and the position of B. anynana. Understanding the evolution of development as well as the evolution of plasticity can be attempted in this species-rich genus that displays a large range of wing patterns with variable degrees of phenotypic responses to the environment. A context to guide extrapolations from population genetic studies within B. anynana to those between closely related species has been long overdue. A phylogeny of 54 of the 80 known Bicyclus species is presented based on the combined 3000-bp sequences of two mitochondrial genes, cytochrome oxidase I and II, and the nuclear gene, elongation factor 1alpha. A series of tree topologies, constructed either from the individual genes or from the combined data, using heuristic searches under a variety of weighting schemes were compared under the best maximum-likelihood models fitted for each gene separately. The most likely tree topology to have generated the three data sets was found to be a tree resulting from a combined MP analysis with equal weights. Most phylogenetic signal for the analysis comes from silent substitutions at the third position, and despite the faster rate of evolution and higher levels of homoplasy of the mitochondrial genes relative to the nuclear gene, the latter does not show substantially stronger support for basal clades. Finally, moving branches from the chosen tree topology to other positions on the tree so as to comply better with a previous morphological study did not significantly affect tree length. 相似文献
6.
Simmons MP Clevinger CC Savolainen V Archer RH Mathews S Doyle JJ 《American journal of botany》2001,88(2):313-325
Phylogenetic relationships within Celastraceae were inferred using a simultaneous analysis of 61 morphological characters and 1123 base pairs of phytochrome B exon 1 from the nuclear genome. No gaps were inferred, and the gene tree topology suggests that the primers were specific to a single locus that did not duplicate among the lineages sampled. This region of phytochrome B was most useful for examining relationships among closely related genera. Fifty-one species from 38 genera of Celastraceae were sampled. The Celastraceae sensu lato (including Hippocrateaceae) were resolved as a monophyletic group. Loesener's subfamilies and tribes of Celastraceae were not supported. The Hippocrateaceae were resolved as a monophyletic group nested within a paraphyletic Celastraceae sensu stricto. Goupia was resolved as more closely related to Euphorbiaceae, Corynocarpaceae, and Linaceae than to Celastraceae. Plagiopteron (Flacourtiaceae) was resolved as the sister group of Hippocrateoideae. Brexia (Brexiaceae) was resolved as closely related to Elaeodendron and Pleurostylia. Canotia was resolved as the sister group of Acanthothamnus within Celastraceae. Perrottetia and Mortonia were resolved as the sister group of the rest of the Celastraceae. Siphonodon was resolved as a derived member of Celastraceae. Maytenus was resolved as three disparate groups, suggesting that this large genus needs to be recircumscribed. 相似文献
7.
The order Rodentia includes nearly half of all living mammalian species. Phylogenetic relationships among 22 species of rodents were investigated by use of a 1.2-kb region from exon 1 of the single-copy nuclear gene IRBP. IRBP has been extensively used for study of interordinal phylogeny in mammals, which allowed inclusion of 50 outgroup species, representing every eutherian order plus seven marsupials. Several clades were strongly supported, regardless of analytical method or inclusion/exclusion of data. These include a monophyletic Muroidea, with a clade including Spalax and Rhizomys as the first divergence; a clade uniting Zapus with Dipus, but excluding Sicista; a monophyletic Myodonta (Muroidea plus Dipodidae); and a clade including Aplodontidae as sister to Sciuridae. One bipartition, separating Hystricognathi and Geomyoidea from the remaining rodents, is strongly supported in all analyses that include third-position sites but almost completely absent from analyses that exclude third-position sites. A combination of nonstationary nucleotide composition and branch length effects may be causing all methods examined (including those using the LogDet distance) to support an incorrect conclusion when third-position sites are analyzed together with first- and second-position sites. 相似文献
8.
[Rpb1 and Rpb2] Mapping of the contact sites␣on two large subunits of the fission yeast Schizosaccharomyces pombe RNA polymerase II with two small subunits, Rpb3 and Rpb5, was carried out using the two-hybrid screening system in the budding
yeast Saccharomyces cerevisiae. Rpb5 was found to interact with any fragment of Rpb1 that contained the region H, which is conserved among the subunit 1
homologues of all RNA polymerases, including the β' subunit of prokaryotic RNA polymerases. In agreement with the fact that
Rpb5 is shared among all three forms of eukaryotic RNA polymerases, the region H of RNA polymerase I subunit 1 (Rpa190) was
also found to interact with Rpb5. On the other hand, two-hybrid screening of Rpb2 fragments from RNA polymerase II indicated
the presence of an Rpb3 contact site in the region H which is conserved among the subunit 2 homologues of all RNA polymerases,
including the β subunit of prokaryotic RNA polymerases. Possible functions of the regions H in the subunits 1 and 2 are discussed.
Received: 10 December 1997 / Accepted: 14 April 1998 相似文献
9.
This project undertakes the first molecular-based phylogenetic study of subfamily Epidendroideae (Orchidaceae). Approximately 1200 nucleotides (from the 3' half of the chloroplast gene ndhF for 34 orchid taxa and a lilioid monocot, Clivia miniata (Amaryllidaceae), were subjected to phylogenetic analysis using parsimony and maximum likelihood methods. Oryza sativa (Poaceae), a nonlilioid monocot, was designated as outgroup. Trees from both parsimony and maximum likelihood methods suggest that subfamily Epidendroideae is monophyletic, with Listera (Neottieae) as sister. Although subtribal relationships are typically well resolved and have strong branch support, intertribal relationships are generally poorly resolved. Perhaps this general lack of resolution among tribes reflects a rapid species radiation that coincided with anatomical, physiological, and anatomical adaptations that initiated large-scale epiphytism in the ancestral Epidendroideae. Six taxa in this study exhibit deletions that are not evenly divisible by three and result in extensive sequence frameshifts. For example, one deletion is 227 bp in length and is flanked by the short direct repeat sequence; TCAATAGGAATTTCTTTT. Multiple deletions and frameshifts suggest that ndhF may be a pseudogene, in at least some orchid taxa. 相似文献
10.
Zhenzhen Yi Weibo Song Jun Gong Alan Warren Khaled A. S. Al‐Rasheid Saud Al‐Arifi Abdulaziz A. Al‐Khedhairy 《Zoologica scripta》2009,38(3):323-331
The small subunit rRNA (SSrRNA) genes of six marine oligohymenophoreans, namely Uronemella filificum , Schizocalyptra sp.-WYG07060701, Schizocalyptra aeschtae , Pleuronema sinica , P. czapikae and Paratetrahymena sp., were sequenced. Phylogenetic trees were constructed with four different methods to assess the inter- and intrageneric relationships among the scuticociliates and the phylogenetic assignment of the order Loxocephalida. The SSrRNA phylogeny indicates that: (i) Paratetrahymena is most closely related to Cardiostomatella ; (ii) the order Loxocephalida and the family Uronematidae both appear to be polyphyletic; (iii) the order Philasterida is a well-defined taxon; (iv) Cyclidium porcatum falls outside the order Pleuronematida in all analyses; (v) the validity of the genus Uronemella is confirmed; (vi) Schizocalyptra is a member of the family Pleuronematidae. Furthermore, the predicted secondary structures of the variable region 4 of the SSrRNA gene sequences show that the size of the terminal bulge in Helix E23–7 is probably different for the orders Philasterida and Pleuronematida. Also, compared to Uronema and Homalogastra , Uronemella has distinct patterns in Helices E23–1, E23–7, E23–8 and E23–9. 相似文献
11.
The phylogeny of the Tunicata was reconstructed using molecular and morphological characters. Mitochondrial cytochrome oxidase I (cox1) and 18S rDNA sequences were obtained for 14 and 4 tunicate species, respectively. 18S rDNA sequences were aligned with gene sequences obtained from GenBank of 57 tunicates, a cephalochordate, and a selachian craniate. Cox1 sequences were aligned with the sequence of two ascidians and a cephalochordate obtained from GenBank. Traditional, morphological, life history, and biochemical characters of larval and adult stages were compiled from the literature and analyzed cladistically. Separate and simultaneous parsimony analyses of molecular and morphological data were carried out. Aplousobranch ascidians from three different families were included in a molecular phylogenetic analysis for the first time. Analysis of the morphological, life history, and biochemical characters results in a highly unresolved tree. Aplousobranchiata form a strongly supported monophylum in the analysis of the 18S rDNA data, the morphological data, and the combined data set. Cionidae is not included in the Aplousobranchiata but nests within the Phlebobranchiata. Appendicularia (=Larvacea) nest within the 'Ascidiacea' as the sister taxon of Aplousobranchiata in the parsimony analysis of the 18S rDNA data and the combined analysis. A potential morphological synapomorphy of Aplousobranchiata plus Appendicularia is the horizontal orientation of the larval tail. In the 18S rDNA and the combined analysis, Thaliacea is included in the 'Ascidiacea' as the sister group to Phlebobranchiata. Pyrosomatida is found to be the sister taxon to the Salpidae in analyses of 18S rDNA and combined data, whereas the analysis of the morphological data recovers a sister group relationship between Doliolidae and Salpidae. Results of cox1 analyses are incongruent with both the 18S rDNA and the morphological phylogenies. Cox1 sequences may evolve too rapidly to resolve relationships of higher tunicate taxa. However, the cox1 data may be useful at lower taxonomic levels. 相似文献
12.
Anja Schulze 《Zoologica scripta》2003,32(4):321-342
Vestimentifera, formerly considered a phylum, are here included in the annelid clade Siboglinidae which also encompasses Frenulata and Sclerolinum . All Siboglinidae inhabit reducing habitats, mostly in the deep sea. Vestimentifera are known from hydrothermal vents and cold seeps. Cladistic analyses of vestimentiferan relationships are performed on three levels: (1) among the vestimentiferan species, (2) among the reconstructed ancestral vestimentiferan and other siboglinids and (3) on the level of the families included in the annelidan clade Sabellida. The monophyly of vestimentiferans is confirmed in all analyses. A group of exclusively vent-inhabiting species forms a derived monophyletic clade. The sister group to the vent clade is the Escarpia complex. Lamellibrachia appears to be paraphyletic. Except for the paraphyly of Lamellibrachia , the reconstructed pattern agrees with the molecular phylogeny based on cytochrome c oxidase subunit I. Ancient ridge systems can be invoked to explain modern day geographical distributions. The Pacific Kula Ridge that spanned the Pacific in an east–west direction during the Early Tertiary, may have been a pathway for the ancestor of the vent clade to reach the eastern Pacific. The biogeography is consistent with the recent divergence of Vestimentifera as inferred from molecular data. The reconstructed phylogeny of the Siboglinidae supports the monophyly of the Frenulata and within those, the Thecanephria and Athecanephria. In contrast to molecular and other morphological analyses, Sclerolinum appears as the sister group to the Frenulata. The family level analysis supports the sister group relationship of the Siboglinidae to a clade formed by Sabellariidae, Sabellidae and Serpulidae. Hypothesized homologies of the vestimentiferan obturaculum and vestimentum to structures in related taxa need further investigation. 相似文献
13.
Emiliano H. Ocampo Rafael Robles Mariana Terossi Jesús D. Nuñez Maximiliano Cledón Fernando L. Mantelatto 《Zoological Journal of the Linnean Society》2013,169(1):27-42
We used mitochondrial cytochrome oxidase I (COI) and the large ribosomal subunit (16S) genes to establish evolutionary relationships amongst species of Calyptraeotheres, evaluate their usefulness as DNA‐barcoding genes, and assess molecular diversity at the population level within Calyptraeotheres garthi. Bayesian, maximum likelihood, and maximum parsimony phylogenies confirmed the monophyly of Calyptraeotheres, showing that the ancestor of C. garthi, Calyptraeotheres hernandezi, and Calyptraeotheres granti radiated after the formation of the Panamanian isthmus. This finding contradicts the austral/tropical hypothesis previously proposed based on morphological data. The COI and 16S distance matrices supported separation of species as well as the genera, and corroborated that DNA barcoding is a useful tool and complements the classical taxonomy in Pinnotheridae. Phylogenetic and genetic distance analyses suggested that C. hernandezi is a junior synonym of C. garthi. Finally, C. garthi did not show a population structure across its distribution range, and showed a pattern consistent with a recent population expansion event that began 230–300 Kya. © 2013 The Linnean Society of London 相似文献
14.
15.
Jan Kwiatowski Douglas Skarecky Kevin Bailey Francisco J. Ayala 《Journal of molecular evolution》1994,38(5):443-454
The phylogeny and taxonomy of the drosophilids have been the subject of extensive investigations. Recently, Grimaldi (1990)
has challenged some common conceptions, and several sets of molecular data have provided information not always compatible
with other taxonomic knowledge or consistent with each other. We present the coding nucleotide sequence of the Cu,Zn superoxide
dismutase gene (Sod) for 15 species, which include the medfly Ceratitis capitata (family Tephritidae), the genera Chymomyza and Zaprionus, and representatives of the subgenera Dorsilopha, Drosophila, Hirtodrosophila, Scaptodrosophila, and Sophophora. Phylogenetic analysis of the Sod sequences indicates that Scaptodrosophila and Chymomyza branched off the main lineage before the major Drosophila radiations. The presence of a second intron in Chymomyza and Scaptodrosophila (as well as in the medfly) confirms the early divergence of these two taxa. This second intron became deleted from the main
lineage before the major Drosophila radiations. According to the Sod sequences, Sophophora (including the melanogaster, obscura, saltans, and willistoni species groups) is older than the subgenus Drosophila; a deep branch splits the willistoni and saltans groups from the melanogaster and obscura groups. The genus Zaprionus and the subgenera Dorsilopha and Hirtodrosophila appear as branches of a prolific “bush” that also embraces the numerous species of the subgenus Drosophila. The Sod results corroborate in many, but not all, respects Throckmorton's (King, R.C. (ed) Handbook of Genetics. Plenum Press, New York, pp. 421–469, 1975) phylogeny; are inconsistent in some important ways with Grimaldi's (Bull. Am. Museum Nat. Hist.
197:1–139, 1990) cladistic analysis; and also are inconsistent with some inferences based on mitochondrial DNA data. The Sod results manifest how, in addition to the information derived from nucleotide sequences, structural features (i.e., the deletion
of an intron) can help resolve phylogenetic issues.
Correspondence requests to: F. J. Ayala 相似文献
16.
Molecular phylogenies of euglenids are usually based on ribosomal RNA genes that do not resolve the branching order among the deeper lineages. We addressed deep euglenid phylogeny using the cytosolic form of the heat-shock protein 90 gene (hsp90), which has already been employed with some success in other groups of euglenozoans and eukaryotes in general. Hsp90 sequences were generated from three taxa of euglenids representing different degrees of ultrastructural complexity, namely Petalomonas cantuscygni and wild isolates of Entosiphon sulcatum, and Peranema trichophorum. The hsp90 gene sequence of P. trichophorum contained three short introns (ranging from 27 to 31 bp), two of which had non-canonical borders GG-GG and GG-TG and two 10-bp inverted repeats, suggesting a structure similar to that of the non-canonical introns described in Euglena gracilis. Phylogenetic analyses confirmed a closer relationship between kinetoplastids and diplonemids than to euglenids, and supported previous views regarding the branching order among primarily bacteriovorous, primarily eukaryovorous, and photosynthetic euglenids. The position of P. cantuscygni within Euglenozoa, as well as the relative support for the nodes including it were strongly dependent on outgroup selection. The results were most consistent when the jakobid Reclinomonas americana was used as the outgroup. The most robust phylogenies place P. cantuscygni as the most basal branch within the euglenid clade. However, the presence of a kinetoplast-like mitochondrial inclusion in P. cantuscygni deviates from the currently accepted apomorphy-based definition of the kinetoplastid clade and highlights the necessity of detailed studies addressing the molecular nature of the euglenid and diplonemid mitochondrial genome. 相似文献
17.
Jean-François Manen Alessandro Natali Friedrich Ehrendorfer 《Plant Systematics and Evolution》1994,190(3-4):195-211
A phylogenetic analysis of 25 species, representing eight genera of theRubieae tribe (Rubiaceae), has been made using the DNA sequence of the chloroplastatp B-rbc L intergene region. Six tropical genera from other tribes ofRubiaceae have been used as outgroups. Whatever the method of analysis (distance, parsimony or maximum likelihood), five groups are clearly separated and described as informal clades. Their relative relationships are not clearly resolved by the parsimony analysis, resulting in eight equally parsimonious trees, 327 steps long, with a consistency index (CI) of 0.749 (excluding uninformative sites). TheRubieae tribe appears monophyletic from the data available. Some new and partly unexpected phylogenetic relationships are suggested. The genusRubia forms a separate clade and appears to be the relatively advanced sister group of the remaining taxa. TheSherardia clade also includes the generaCrucianella andPhuopsis. Galium sect.Aparinoides appears closely attached to theAsperula sect.Glabella clade. The remaining taxa ofGalium are paraphyletic:Galium sect.Platygalium (in theCruciata clade) is linked to the advanced generaCruciata andValantia; the more apomorphic groups ofGalium form theGalium sect.Galium clade, including the perennial sectionsGalium, Leiogalium, andLeptogalium as well as the annual (and possibly polyphyletic) sect.Kolgyda. 相似文献
18.
Phylogeny of taxaceae and cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region 总被引:6,自引:0,他引:6
Phylogeny of the Taxaceae genera and the monotypic family Cephalotaxaceae has been extraordinarily controversial. In this paper chloroplast matK genes and nuclear ITS sequences were determined for all six genera of the two families and representatives of other conifer families. Analysis using either the nonsynonymous sites or the deduced amino acid sequences of matK genes strongly indicates that taxad genera and Cephalotaxaceae are monophyletic, with the Taxodiaceae/Cupressaceae clade as their sister group. Cephalotaxus is basal to the taxad genera, among which two clades, Torreya/Amentotaxus and Taxus/Pseudotaxus/Austrotaxus, are resolved. They correspond to Janchen's two tribes, Torreyeae and Taxeae. In Taxeae, Austrotaxus is the first to branch off. Analyses of the nuclear ITS sequence data corroborated the topology of the matK gene tree. These results refute the views that Cephalotaxaceae has no alliance with Taxaceae and that Austrotaxus and Amentotaxus should be excluded from the Taxaceae. We estimated the divergence time between the Taxodiaceae/Cupressaceae and the Cephalotaxaceae/Taxaceae clades to be 192-230 Myr ago and the divergence time between taxads and Cephalotaxus to be 149-179 Myr ago. Soon after the latter divergence event, within 6-8 Myr, the two taxad tribes originated. In conclusion, our data do not support Florin's claim that taxads could be traced to Devonian psilophytes (359-395 Myr ago). 相似文献
19.
Su ZH Imura Y Okamoto M Kim CG Zhou HZ Paik JC Osawa S 《Molecular phylogenetics and evolution》2004,30(1):152-166
Genealogical trees have been constructed using mitochondrial ND5 gene sequences of 87 specimens consisting of 32 species which have been believed to belong to the division Digitulati (one of the lineages of the subtribe Carabina) of the world. There have been recognized six lineages, which are well separated from each other. Each lineage contains the following genus: (1) the lineage A: Ohomopterus from Japan; (2) the lineage B: Isiocarabus from eastern Eurasian Continent; (3) the lineage C: Carabus from China which are further subdivided into three sublineages; (4) the lineage D: Carabus from USA; (5) the lineage E: Carabus from the Eurasian Continent, Japan and North America; and (6) the lineage F: Eucarabus from the Eurasian Continent. Additionally, the genus Acrocarabus which had been treated as a constituent of the division Archicarabomorphi has been recognized to be the 7th lineage of the division Digitulati from the ND5 genealogical analysis as well as morphology. These lineages are assumed to have radiated within a short period and are largely linked to their geographic distribution. 相似文献
20.
Hossein Barani‐Beiranvand Mansour Aliabadian Martin Irestedt Yanhua Qu Jamshid Darvish Tamás Székely René E. Van Dijk Per G. P. Ericson 《Journal of avian biology》2017,48(7):932-940
Penduline tits (Remiz spp.) are renowned for their diverse mating and parenting strategies, and are a well‐studied system by behavioural ecologists. However, the phylogenetic relationships and species delimitations within this genus are poorly understood. Here, we investigate phylogenetic relationships within the genus Remiz by examining the genetic variation in the mitochondrial cytochrome‐b gene of 64 individuals and in ten autosomal microsatellite markers from 44 individuals. The taxon sampling includes individuals from all currently recognized species (R. pendulinus, R. macronyx, R. coronatus, and R. consobrinus) and most subspecies in the Palearctic region. We showed that R. coronatus and R. consobrinus are genetically well differentiated and constitute independent evolutionary lineages, separated from each other and from R. pendulinus/macronyx. However, we found no evidence for significant differentiation among R. pendulinus/macronyx individuals in mtDNA haplotypes and only marginal differences between R. pendulinus and R. macronyx in microsatellite markers. Hence, based on present data our recommendation is to treat R. pendulinus and R. macronyx as conspecific and R. coronatus and R. consobrinus as separate species. 相似文献