首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Brain ischemia is the underlying cause of neuron death during stroke and brain trauma. Neural cells exposed to ischemia can undergo apoptosis. Adrenomedullin (AM) in combination with its enhancing binding protein, AMBP-1, has been shown to reduce tissue damage in inflammation.

Methods

To evaluate a beneficial effect of AM/AMBP-1 administration in brain ischemia, we employed an in vitro model of neuronal hypoxia using differentiated human neuroblastoma SH-SY5Y cells.

Results

After exposure to 1% O2 for 20 h, neural cells were injured with decreased ATP levels and increased LDH release. Pre-administration of AM/AMBP-1 significantly reduced hypoxia-induced cell injury. Moreover, AM/AMBP-1 treatment reduced the number of TUNEL-positive cells and activation of caspase-3, compared to cells exposed to hypoxia alone. AM/AMBP-1 prevented a reduction of cAMP levels and protein kinase A (PKA) activity in neural cells after hypoxia exposure. Correspondingly, an elevation of cAMP levels by forskolin protected neural cells from hypoxia-induced injury. Inhibition of PKA by KT5720 abolished the protective effect of AM/AMBP-1 on hypoxia-induced apoptosis.

Conclusions

AM/AMBP-1 elevates cAMP levels, followed by activating PKA, to protect neural cells from the injury caused by hypoxia.

General significance

AM/AMBP-1 may be used as therapeutic agents to prevent neuron damage from brain ischemia.  相似文献   

2.
Stroke results in inflammation, brain edema, and neuronal death. However, effective neuroprotectants are not available. Recent studies have shown that high mobility group box-1 (HMGB1), a proinflammatory cytokine, contributes to ischemic brain injury. Aquaporin 4 (AQP4), a water channel protein, is considered to play a pivotal role in ischemia-induced brain edema. More recently, studies have shown that pannexin 1 channels are involved in cerebral ischemic injury and the cellular inflammatory response. Here, we examined whether the pannexin 1 channel inhibitor probenecid could reduce focal ischemic brain injury by inhibiting cerebral inflammation and edema. Transient focal ischemia was induced in C57BL/6J mice by middle cerebral artery occlusion (MCAO) for 1 h. Infarct volume, neurological score and cerebral water content were evaluated 48 h after MCAO. Immunostaining, western blot analysis and ELISA were used to assess the effects of probenecid on the cellular inflammatory response, HMGB1 release and AQP4 expression. Administration of probenecid reduced infarct size, decreased cerebral water content, inhibited neuronal death, and reduced inflammation in the brain 48 h after stroke. In addition, HMGB1 release from neurons was significantly diminished and serum HMGB1 levels were substantially reduced following probenecid treatment. Moreover, AQP4 protein expression was downregulated in the cortical penumbra following post-stroke treatment with probenecid. These results suggest that probenecid, a powerful pannexin 1 channel inhibitor, protects against ischemic brain injury by inhibiting cerebral inflammation and edema.  相似文献   

3.
Ischemic stroke induces microglial activation and release of proinflammatory cytokines, contributing to the expansion of brain injury and poor clinical outcome. Propofol has been shown to ameliorate neuronal injury in a number of experimental studies, but the precise mechanisms involved in its neuroprotective effects remain unclear. We tested the hypothesis that propofol confers neuroprotection against focal ischemia by inhibiting microglia-mediated inflammatory response in a rat model of ischemic stroke. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h of reperfusion. Propofol (50 mg/kg/h) or vehicle was infused intravenously at the onset of reperfusion for 30 minutes. In vehicle-treated rats, MCAO resulted in significant cerebral infarction, higher neurological deficit scores and decreased time on the rotarod compared with sham-operated rats. Propofol treatment reduced infarct volume and improved the neurological functions. In addition, molecular studies demonstrated that mRNA expression of microglial marker Cd68 and Emr1 was significantly increased, and mRNA and protein expressions of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 were augmented in the peri-infarct cortical regions of vehicle-treated rats 24 h after MCAO. Immunohistochemical study revealed that number of total microglia and proportion of activated microglia in the peri-infarct cortical regions were markedly elevated. All of these findings were ameliorated in propofol-treated rats. Furthermore, vehicle-treated rats had higher plasma levels of interleukin-6 and C-reactive protein 24 h after MCAO, which were decreased after treatment with propofol. These results suggest that propofol protects against focal cerebral ischemia via inhibition of microglia-mediated proinflammatory cytokines. Propofol may be a promising therapeutic agent for the treatment of ischemic stroke and other neurodegenerative diseases associated with microglial activation.  相似文献   

4.
We recently discovered that the vascular responsiveness to adrenomedullin (AM), a potent vasoactive peptide, decreased during sepsis and hemorrhage in the rat and was markedly improved by its novel binding protein (AMBP-1). Moreover, AM/AMBP-1 appears to be one of the leading candidates for further development to treat sepsis and hemorrhage. However, the extremely high cost of commercial AMBP-1 limits the development of human AM and AMBP-1 as therapeutic agents. The purpose of this study was to isolate and purify AMBP-1 from normal human serum and test its stability and biological activity under in vitro and in vivo conditions. AMBP-1 was isolated and purified from normal human serum with a yield of about 3.0 mg per 100 mL and purity of >99%. The purified AMBP-1 has a AM-binding capacity similar to that of the commercial AMBP-1. Human AM and human AMBP-1 in combination significantly inhibited lipopolysaccharide-induced tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 production from macrophages. The biological activity of the purified human AMBP-1 was well preserved when stored at 45 degrees C for 5 d in solution or at 100 degrees C for 1 h in powder. Moreover, administration of AM and purified AMBP-1 to hemorrhaged rats attenuated tissue injury and neutrophil accumulation. Purified AMBP-1 in combination with AM also suppressed the hemorrhage-induced rise in serum cytokines TNF-alpha and IL-6. Thus, we have successfully purified biologically active AMBP-1 from human normal serum and demonstrated the stability of purified human AMBP-1. This technique will enable us to further develop human AM/AMBP-1 as a novel treatment for safe and effective therapy of patients with hemorrhagic shock, sepsis, and ischemic injury.  相似文献   

5.
Wu R  Dong W  Qiang X  Ji Y  Cui T  Yang J  Zhou M  Blau S  Marini CP  Ravikumar TS  Wang P 《Peptides》2008,29(7):1223-1230
We recently discovered that vascular responsiveness to adrenomedullin (AM), a vasoactive hormone, decreases after hemorrhage, which is markedly improved by the addition of its binding protein AMBP-1. One obstacle hampering the development of AM/AMBP-1 as resuscitation agents in trauma victims is the potential immunogenicity of rat proteins in humans. Although less potent than rat AM, human AM has been shown to increase organ perfusion in rats. We therefore hypothesized that administration of human AM/AMBP-1 improves organ function and survival after severe blood loss in rats. To test this, male Sprague-Dawley rats were bled to and maintained at an MAP of 40 mmHg for 90 min. They were then resuscitated with an equal volume of shed blood in the form of Ringer's lactate (i.e., low-volume resuscitation) over 60 min. At 15 min after the beginning of resuscitation, human AM/AMBP-1 (12/40 or 48/160 microg/kg BW) were administered intravenously over 45 min. Various pathophysiological parameters were measured 4h after resuscitation. In additional groups of animals, a 12-day survival study was conducted. Our result showed that tissue injury as evidenced by increased levels of transaminases, lactate, and creatinine, was present at 4h after hemorrhage and resuscitation. Moreover, pro-inflammatory cytokines TNF-alpha and IL-6 were also significantly elevated. Administration of AM/AMBP-1 markedly attenuated tissue injury, reduced cytokine levels, and improved the survival rate from 29% (vehicle) to 62% (low-dose) or 70% (high-dose). However, neither human AM alone nor human AMBP-1 alone prevented the significant increase in ALT, AST, lactate and creatinine at 4h after the completion of hemorrhage and resuscitation. Moreover, the half-life of human AM and human AMBP-1 in rats was 35.8 min and 1.68 h, respectively. Thus, administration of human AM/AMBP-1 may be a useful approach for attenuating organ injury, and reducing mortality after hemorrhagic shock.  相似文献   

6.
Zhang F  Wu R  Zhou M  Blau SA  Wang P 《Regulatory peptides》2009,152(1-3):82-87
Previous studies have demonstrated that co-administration of rat adrenomedullin (AM) and human AM binding protein-1 (AMBP-1) has various beneficial effects following adverse circulatory conditions. In order to reduce rat proteins to elicit possible immune responses in humans, we determined the effect of human AM combined with human AMBP-1 after intestinal ischemia and reperfusion (I/R). Intestinal ischemia was induced in the rat by occluding the superior mesenteric artery for 90 min. At 60 min after the beginning of reperfusion, human AM/AMBP-1 at 3 different dosages was administered intravenously over 30 min. At 240 min after the treatment, blood and tissue samples were harvested and measured for pro-inflammatory cytokines (i.e., TNF-alpha and IL-6), myeloperoxidase activities in the gut and lungs, and cleaved caspase-3 expression in the lungs, as well as serum levels of hepatic enzymes and lactate. In additional groups of animals, a 10-day survival study was conducted. Results showed that administration of human AM/AMBP-1 reduced pro-inflammatory cytokines, attenuated organ injury, and improved the survival rate in a seemingly dose-response fashion. Co-administration of the highest dose of human AM/AMBP-1 in this study had the optimal therapeutic effect in the rat model of intestinal I/R.  相似文献   

7.
Ischemic stroke is the leading cause of disabilities worldwide. MicroRNA‐377 (miR‐377) plays important roles in ischemic injury. The present study focused on the mechanisms of miR‐377 in protecting ischemic brain injury in rats. Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Primary rat microglial cells and brain microvascular endothelial cells (BMECs) were exposed to oxygen‐glucose deprivation (OGD). The concentrations of cytokines (TNF‐α, IL‐1β, IL‐6, IFN‐γ, TGF‐β, MMP2, COX2, and iNOS) in the culture medium were measured by specific ELISA. Tube formation assay was for the in vitro study of angiogenesis. Luciferase reporter assay was performed to confirm whether VEGF and EGR2 were direct targets of miR‐377. The MCAO rats were intracerebroventricular (ICV) injection of miR‐377 inhibitor to assess its protective effects in vivo. MiR‐377 levels were decreased in the rat brain tissues at 1, 3, and 7 d after MCAO. Both microglia cells and BMECs under OGD showed markedly lower expression levels of miR‐377 while higher expression levels of EGR2 and VEGF compared to those under normoxia conditions. Knockdown of miR‐377 inhibited microglial activation and the release of pro‐inflammatory cytokines after OGD. Suppression of miR‐377 promoted the capillary‐like tube formation and cell proliferation and migration of BMECs. The anti‐inflammation effect of EGR2 and the angiogenesis effect of VEGF were regulated by miR‐377 after OGD. Inhibition of miR‐377 decreased cerebral infarct volume and suppressed cerebral inflammation but promoted angiogenesis in MCAO rats. Knockdown of miR‐377 lessened the ischemic brain injury through promoting angiogenesis and suppressing cerebral inflammation. J. Cell. Biochem. 119: 327–337, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Long non-coding RNAs (lncRNAs) have emerged as major regulators in neurological diseases, and clarifying their roles in cerebral ischemic injury may provide novel targets for treating ischemic stroke. In this study, we mainly studied the role of lncRNA-RMST in middle cerebral artery occlusion (MCAO)-induced mouse brain injury. We showed that RMST expression level was significantly up-regulated in oxygen-glucose deprivation (OGD)-treated primary hippocampal neuron, MCAO-induced injured brain, and the plasma of patients with ischemic stroke. RMST silencing protected against MCAO-induced ischemic brain injury in vivo and OGD-induced primary hippocampal neuron injury in vitro. Intracerebroventricular injection of RMST shRNA significantly decreased brain RMST expression, reduced brain infarct size, and improved neurological function. Collectively, this study provides evidence that lncRNA is involved in the pathogenesis of ischemic brain injury, and suggests a promising approach of RMST inhibition in treating ischemic stroke.  相似文献   

9.
Wu R  Zhou M  Wang P 《Regulatory peptides》2003,112(1-3):19-26
Recent studies have demonstrated that administration of adrenomedullin (AM) and AM binding protein-1 (AMBP-1) maintains cardiovascular stability and reduces mortality in sepsis. However, the mechanism responsible for the beneficial effect of AM/AMBP-1 remains unknown. The aim of this study therefore was to determine whether AM/AMBP-1 directly reduces lipopolysaccharide (LPS)-induced secretion of TNF-alpha from murine macrophage-like cell line RAW 264.7 cells and Kupffer cells isolated from normal rats. TNF-alpha release and gene expression were determined by ELISA and RT-PCR, respectively. The results indicated that LPS increased TNF-alpha production from RAW cells by 38-63-fold in a dose- and time-dependent manner. Although incubation with AM or AMBP-1 alone inhibited LPS-induced TNF-alpha release by 14-22% and 13-22%, respectively, AM and AMBP-1 in combination significantly suppressed TNF-alpha production (by 24-35%). Moreover, the upregulated TNF-alpha mRNA by LPS stimulation was significantly reduced by AM/AMBP-1, but not by AM or AMBP-1 alone. In the Kupffer cells primary culture, AM or AMBP-1 alone inhibited LPS-induced TNF-alpha production by 52% and 44%, respectively. Co-culture with AM/AMBP-1 markedly reduced TNF-alpha production (by 90%). Moreover, AM or AMBP-1 alone decreased TNF-alpha mRNA expression by 41% and 36%, respectively, whereas the combination of AM/AMBP-1 decreased its expression by 63%. These results indicate that AM and AMBP-1 in combination effectively suppress LPS-induced TNF-alpha expression and release especially from primary cultured Kupffer cells, suggesting that the downregulatory effect of AM/AMBP-1 on proinflammatory cytokine TNF-alpha may represent a mechanism responsible for their beneficial effects in preventing inflammatory responses and tissue damage in sepsis.  相似文献   

10.
Ischemic stroke is a leading cause of mortality and disability worldwide. Nevertheless, its molecular mechanisms have not yet been adequately illustrated. Progranulin (PGRN) is a secreted glycoprotein with pleiotropic functions. In the present study, we found that PGRN expression was markedly reduced in mice after stroke onset through middle cerebral artery occlusion (MCAO). We also showed that necroptosis was a mechanism underlying cerebral I/R injury. Importantly, PGRN knockdown in vivo significantly promoted the infarction volume and neurological deficits scores in mice after MCAO surgery. Necroptosis induced by MCAO was further accelerated by PGRN knockdown, as evidenced by the promoted expression of phosphorylated receptor-interacting protein (RIP) 1 kinase (RIPK1), RIPK3 and mixed lineage kinase domain-like (MLKL), which was accompanied with increased expression of cleaved Caspase-8 and Caspase-3. However, PGRN over-expression was neuroprotective. Additionally, PGRN-regulated ischemic stroke was related to ROS accumulation that MCAO-mice with PGRN knockdown exhibited severe oxidative stress, as proved by the aggravated malondialdehyde (MDA) and lipid peroxidation (LPO) contents, and the decreased superoxide dismutase (SOD) activity. However, PGRN over-expression in mice with cerebral ischemia showed anti-oxidative effects. Finally, PGRN was found to attenuate oxidative damage partly via its regulatory effects on necroptosis. Therefore, promoting PGRN expression could reduced cerebral I/R-induced brain injury by suppressing neroptosis and associated reactive oxygen species (ROS) production. These data elucidated that PGRN might provide an effective therapeutic treatment for ischemic stroke.  相似文献   

11.
12.
The inflammatory responses accompanying stroke are recognized to contribute to secondary ischemic injury. TIPE2 is a very recently identified negative regulator of inflammation that maintains immune homeostasis. However, it is unknown whether TIPE2 is expressed in the brain and contributes to the regulation of cerebral diseases. In this study, we explored the potential roles of TIPE2 in cerebral ischemia/reperfusion injury. TIPE2−/− mice were used to assess whether TIPE2 provides neuroprotection following cerebral ischemia/reperfusion induced by middle cerebral artery occlusion (MCAO), and in vitro primary cerebral cell cultures were used to investigate the expression and regulation of TIPE2. Our results show that genetic ablation of the Tipe2 gene significantly increased the cerebral volume of infarction and neurological dysfunction in mice subjected to MCAO. Flow cytometric analysis revealed more infiltrating macrophages, neutrophils, and lymphocytes in the ischemic hemisphere of TIPE2−/− mice. The responses to inflammatory cytokines and chemokines were significantly increased in TIPE2−/− mouse brain after MCAO. We further observed that TIPE2 was highly induced in WT mice after cerebral ischemia and was expressed mainly in microglia/macrophages, but not in neurons and astrocytes. Finally, we found that regulation of TIPE2 expression was associated with NADPH oxidase activity. These findings demonstrate, for the first time, that TIPE2 is involved in the pathogenesis of stroke and suggest that TIPE2 plays an essential role in a signal transduction pathway that links the inflammatory immune response to specific conditions after cerebral ischemia. Targeting TIPE2 may be a new therapeutic strategy for stroke treatment.  相似文献   

13.
Inhibition of soluble epoxide hydrolase (sEH) is a potential target of therapy for ischemic injury. sEH metabolizes neuroprotective epoxyeicosatrienoic acids (EETs). We recently demonstrated that sEH inhibition reduces infarct size after middle cerebral artery occlusion (MCAO) in type 1 diabetic mice. We hypothesized that inhibition of sEH would protect against ischemic injury in type 2 diabetic mice. Type 2 diabetes was produced by combined high-fat diet, nicotinamide and streptozotocin in male mice. Diabetic and control mice were treated with vehicle or the sEH inhibitor t-AUCB then subjected to 60-min MCAO. Compared to chow-fed mice, high fat diet-fed mice exhibited an upregulation of sEH mRNA and protein in brain, but no differences in brain EETs levels were observed between groups. Type 2 diabetic mice had increased blood glucose levels at baseline and throughout ischemia, decreased laser-Doppler perfusion of the MCA territory after reperfusion, and sustained larger cortical infarcts compared to control mice. t-AUCB decreased fasting glucose levels at baseline and throughout ischemia, improved cortical perfusion after MCAO and significantly reduced infarct size in diabetic mice. We conclude that sEH inhibition, as a preventative treatment, improves glycemic status, post-ischemic reperfusion in the ischemic territory, and stroke outcome in type 2 diabetic mice.  相似文献   

14.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Shikonin has gained attention for its prominent anti-inflammatory property, but up to now little is known about shikonin treatment in acute ischemic stroke. The aim of this study was to evaluate the potential neuroprotective role of shikonin in cerebral ischemic injury, and investigate whether shikonin modulated inflammatory responses after stroke. Focal cerebral ischemia in male ICR mice was induced by transient middle cerebral artery occlusion. Shikonin (10 and 25 mg/kg) was administered by gavage once a day for 3 days before surgery and another dosage after operation. Neurological deficit, infarct volume, brain edema, blood–brain barrier (BBB) dysfunction, and inflammatory mediators were evaluated at 24 and 72 h after stroke. Compared with vehicle group, 25 mg/kg shikonin significantly improved neurological deficit, decreased infarct volume and edema both at 24 and 72 h after transient ischemic stroke, our data also showed that shikonin inhibited the pro-inflammatory mediators, including TLR4, TNF-α, NF-κB, and phosphorylation of p38MAPK in ischemic cortex. In addition, shikonin effectively alleviated brain leakage of Evans blue, up-regulated claudin-5 expression, and inhibited the over-expressed MMP-9 in ischemic brain. These results suggested that shikonin effectively protected brain against ischemic damage by regulating inflammatory responses and ameliorating BBB permeability.  相似文献   

15.
Inflammation plays an important role in ischemic stroke and in humans IL-10 may have a beneficial effect in stroke. We mucosally administered myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide to C57BL/6 mice before middle cerebral artery occlusion (MCAO) to induce an anti-inflammatory T cell response directed at CNS myelin. Nasal and oral administration of MOG(35-55) peptide decreased ischemic infarct size at 24 and 72 h after MCAO surgery. Nasal MOG(35-55) peptide was most efficacious and reduced infarct size by 70% at 24 h and by 50% at 72 h (p 相似文献   

16.
Administration of vascular endothelial growth factor (VEGF) has been shown to increase cerebral blood flow and reduce neurological damage after experimental ischemic brain injury. The purpose of this study was to examine the optimal dose and time window for the neuroprotective effect of VEGF when administrated after focal ischemia/reperfusion injury in rabbits. Focal cerebral ischemia/reperfusion was induced by the middle cerebral artery occlusion (MCAO) method. In a dose response experiment, low (1.25 ng/μL), middle (2.5 ng/μL) and high (5.0 ng/μL) doses of VEGF were administered 2h after MCAO by the route of perifocal region. The VEGF at a dose of middle (2.5 ng/μL) displayed excellent effects on neuroprotective efficacy for focal cerebral ischemia/reperfusion injury. In another experiment, 2.5 ng/μL VEGF was administered at times varying from 2 to 8h after MCAO. Infarct volume, water content and neurological deficits were significantly reduced when VEGF was given at 2 and 3h after injury. The protective effect was less when the same dose was given at the later times. Thus, the present findings indicated that VEGF reduced ischemic neuronal danger with a therapeutic time window within the first 3h of transient MCAO and may be useful in the treatment of acute ischemic stroke in humans.  相似文献   

17.
Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12 h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.  相似文献   

18.
In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.  相似文献   

19.
20.
Apelin is an endogenous ligand of G protein-coupled receptor-apelin and angiotensin-1-like receptor (APJ). The biological effects of apelin–APJ system are reported in multiple systems including cardiovascular, endocrinal, and gastrointestinal system. Previous studies had shown that apelin-13 is a potential protective agent on cardiac ischemia; however, the role of apelin in the central nervous system remained unknown. In this study, we investigated therapeutic effects of apelin-36, a long form of apelin, in ischemic brain injury models. We found that apelin-36 reduced cerebral infarct volume in the middle cerebral artery occlusion (MCAO) model and the neonatal hypoxic/ischemic (H/I) injury model. Apelin-36 improved neurological deficits in the MCAO model and promoted long-term functional recovery after H/I brain injury. We further explored the protective mechanisms of apelin-36 on H/I brain injury. We clearly demonstrated that apelin-36 significantly reduced the levels of cleaved caspase-3 and Bax, two well-established apoptotic markers after H/I injury, indicating the anti-apoptotic activity of apelin-36 in ischemic injury. Since apelin-36 increased the level of phosphorylated Akt after H/I injury, we treated neonates with a specific PI3K inhibitor LY294002. We found that LY294002 decreased the phosphorylated Akt level and attenuated protective effects of apelin-36 on apoptosis. These suggested that the PI3K/Akt pathway was at least in part involved in the anti-apoptotic mechanisms of apelin-36. Our findings demonstrated that apelin-36 was a promising therapeutic agent on the treatment of ischemic brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号