首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Botulinum C2 toxin is known to ADP-ribosylate actin. The toxin effect was studied on [3H]noradrenaline secretion of PC12 cells. [3H]Noradrenaline release was stimulated five- to 15-fold by carbachol (100 microM) or K+ (50 mM) and 10-30-fold by the ionophore A23187 (5 microM). Pretreatment of PC12 cells with botulinum C2 toxin for 4-8 h at 20 degrees C, increased carbachol-, K+-, and A23187-induced, but not basal, [3H]noradrenaline release maximally 1.5-to three-fold, whereas approximately 75% of the cellular actin pool was ADP-ribosylated. Treatment of PC12 cells with botulinum C2 toxin for up to 1 h at 37 degrees C also increased stimulated [3H]noradrenaline secretion, whereas toxin treatment for greater than 1 h decreased the enhanced [3H]noradrenaline release stimulated by carbachol and K+ but not by A23187. Concomitantly with toxin-induced stimulation of secretion, 20-50% of the cellular actin was ADP-ribosylated, whereas greater than 60% of actin was modified when exocytosis was attenuated. The data indicate that ADP-ribosylation of actin by botulinum C2 toxin largely modulates stimulation of [3H]noradrenaline release. Moreover, the biphasic toxin effects suggest that distinct mechanisms are involved in the role of actin in secretion.  相似文献   

2.
Guinea pig brain cortex synaptosomes and neurosecretory PC12 cells were loaded with [3H]3,4-dihydroxyphenylethylamine ([3H]DA, [3H]dopamine) and then exposed to leptinotoxin-h (LPTx) (purified and partially purified preparations, obtained from the hemolymph of Leptinotarsa haldemani). In a Ca2+-containing Ringer medium the toxin induced prompt and massive release of the neurotransmitter. Half-maximal effects were obtained at concentrations estimated of approximately 3 X 10(-11) M for synaptosomes, and 1.5 X 10(-10) M for PC12 cells. Release responses in the two experimental systems investigated were dependent to different extents on the Ca2+ concentration in the medium. In synaptosomes clear, although slow, release of [3H]DA was elicited by the toxin even in Ca2+-free, EGTA-containing medium, provided that high (in the 10(-10) M range) concentrations were used; near-maximal responses were observed at 10(-5)M Ca2+. In contrast, the toxin-induced release from PC12 cells was appreciable only at 3 X 10(-5) M Ca2+, and was maximal at 2 X 10(-4) M and above. In both synaptosomes and PC12 cells Sr2+ and Ba2+ could substitute for Ca2+; Co2+ was inhibitory, whereas Mn2+ failed to modify the release induced by the toxin in Ca2+-containing medium. Organic blockers of the voltage-dependent Ca2+ channel (verapamil and nitrendipine) and calmodulin blocking drugs (trifluoperazine and calmidazolium) failed to inhibit the toxin-induced release of [3H]DA. LPTx induced profound morphological effects. Synaptosomes treated in the Ca2+-containing medium exhibited fusion of synaptic vesicles, formation of numerous infoldings and large cisternae, and alterations of mitochondria. In the Ca2+-free medium the effects were similar, except that their appearance was delayed, and mitochondria were well preserved. Swelling was observed in PC12 cells, accompanied by enlargement of the Golgi area, accumulation of multivesicular bodies, mitochondrial alterations, and decreased number of secretion granules (Ca2+-containing medium). Morphometric analyses revealed a good correlation between the decrease of both synaptic vesicles (synaptosomes) and neurosecretory granules (PC12 cells), and the release of [3H]DA measured biochemically. This is a good indication that the release effect of the toxin is due to stimulation of exocytosis. Taken as a whole, these results confirm the similarity of the effects of LPTx with alpha-latrotoxin of the black widow spider venom, mentioned in the companion article. However, differences in effect and target specificity suggest that the two toxins are specific to separate binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Pescatori M  Grasso A 《Biochimie》2000,82(9-10):909-914
alpha-Latrotoxin, a protein toxin present in the venom of black widow spider, interacts with membrane receptors of neurons and other secretory cells to stimulate exocytosis. Two types of receptors have been identified and cloned. Our attention has been focused on the calcium independent receptor, a G-protein coupled receptor, named latrophilin to see whether alpha-latrotoxin interaction was capable to produce an ionotropic effect, in alternative to the metabotropic hypothesis. Expression of latrophilin receptor is sufficient for the alpha-latrotoxin effect to become manifest. By inducing the transient expression of latrophilin receptor in non-neuronal human embryonic cells, we made them susceptible to toxin action as demonstrated by the increase in 45Ca(2+) accumulation detected after toxin treatment. Since the presence of a monoclonal antibody against alpha-latrotoxin (4C4.1 mAb) was able to obliterate toxin-dependent effects, we further investigated the nature of toxin-antibody interaction by characterization of the binding epitope using phage display-peptide libraries. A conformational epitope was recognized and partially localized on a region of the peptide toxin whereby a tetrameric structure is formed and inserted into the membrane of target cells where it functions as a pore.  相似文献   

4.
Abstract A toxin that causes a massive presynaptic activation of transmitter release from nerve terminals is α-latrotoxin, isolated from Latrodectus tredecimguttatus spider venom. This toxin has been highly purified, utilizing as a biological assay a toxin-dependent increase in 45Ca2+-accumulation by PC12 cells. The purification protocol includes an ion-exchange step and a gel-filtration column, by fast-flow liquid chromatography. The resulting toxin is a polypeptide of about 125 kDa in molecular mass. At nmol concentrations it specifically activates calcium influx and transmitter secretion after interacting with neuronal acceptors of the presynaptic membrane. The inhibitory effect of trivalent ions (which may develop as degradation product of 45Ca2+) on toxin-dependent calcium accumulation by PC12 cells is described. The results obtained suggest that calcium fluxes directly involved in the neurosecretory event, may occur through newly formed toxin-dependent channels.  相似文献   

5.
Tetanus toxin was found to be a potent inhibitor of neurosecretion in the rat pheochromocytoma cell line PC12, a system in which biochemical and functional studies could be performed in parallel. Incubation of the cells with 10 nM tetanus toxin (3 h) led to an inhibition of acetylcholine release by 75-80% when evoked by 200 microM veratridine, 1 mM carbachol, or 2 mM Ba2+. The main characteristics of the inhibition process are: 1) the toxin is very potent, with threshold doses of 10 pM; 2) the action of toxin is blocked at low temperature (0 degrees C) and by antitoxin; 3) the effects are dose- and time-dependent; 4) a concentration-dependent lag phase precedes the onset of the inhibitory effects. Thus the PC12 cultures are a valid system for studies on the underlying molecular process in tetanus action. This system was exploited by the use of long term incubation studies to examine the processes responsible for the lag phase. When cells were incubated with 0.1 nM 125I-tetanus toxin, cell-associated toxin reached a plateau of 16 fmol of toxin/mg of protein, yet the toxic effects did not appear until 12 h. Further, PC12 cells were found to rapidly internalize tetanus toxin, with a half-life of 1-2 min, once it was bound to the surface of the cells. Thus, the lag phase results from steps that occur in the intracellular compartment after internalization. An important discovery was that the differentiation state of the PC12 cells was a critical factor in determining sensitivity to tetanus toxin. Cells that were cultured with nerve growth factor for 8-12 days were very sensitive to toxin. In contrast, acetylcholine release from nondifferentiated, autodifferentiated, or dexamethasone-treated cultures was insensitive to tetanus toxin. Since differential expression of high affinity tetanus toxin receptors cannot explain these results, it is concluded that PC12 cells are capable of expressing different forms of excitation-secretion coupling mechanisms. Tetanus toxin should prove a valuable probe to further distinguish these processes.  相似文献   

6.
alpha Latrotoxin of black widow spider is known to bind with high affinity to surface sites of rat pheochromocytoma (PC12) cells, thereby causing depolarization, calcium influx and massive neurotransmitter release. We show here that the toxin causes the accumulation of inositol phosphates, the products of phosphoinositide breakdown. Inositol 1,4,5, trisphosphate was predominantly accumulated shortly after toxin application. Phosphoinositide breakdown appears to be a direct consequence of toxin binding because high K+ and ionophores (which induce depolarization, calcium influx and transmitter release by different mechanisms) were without such effect. Phosphoinositide breakdown is known as an event coupled to the activation of receptors of various hormones and transmitters. We suggest therefore that the alpha latrotoxin binding site is a receptor coupled across the membrane to the phosphoinositide hydrolysing system.  相似文献   

7.
Monoclonal antibodies (mAb) selectively recognizing tumor surface antigens are an important and evolving approach to targeted cancer therapy. One application of therapeutic mAbs is drug targeting via mAb-drug conjugate (ADC) technology. Identification of mAbs capable of internalizing following antigen binding has been accomplished by tracking decline of surface-bound mAb or by internalization of a secondary mAb linked to a toxin. These methods may not be sufficiently sensitive for screening nor wholly predictive of the mAbs' capacity for a specific drug delivery. We have developed a highly selective and sensitive method to detect mAbs for cell internalization and drug delivery. This system uses secondary anti-human or anti-murine mAbs conjugated to the high-potency drug monomethyl auristatin E (MMAE) via a highly stable, enzymatically cleavable linker. Prior studies of this drug linker technology demonstrated internalization of a primary ADC leads to trafficking to lysosomes, drug release by lysosomal cathepsin B, and ensuing cell death. A secondary antibody--drug conjugate (2 degrees ADC) capable of binding primary mAbs bound to the surface of antigen-positive cells has comparable drug delivery capability. The system is sufficiently sensitive to detect internalizing mAbs in nonclonal hybridoma supernatants and is predictive of the activity of subsequently produced primary ADC. Because of their high extracellular stability, the noninternalized 2 degrees ADC are 100--1000-fold less toxic to cells over extended periods of time, permitting an assay in which components can be added without need for separate wash steps. This homogeneous screening system is amenable to medium-throughput screening applications and enables the early identification of mAbs capable of intracellular trafficking for drug delivery and release.  相似文献   

8.
The effect of tetanus toxin on neuropeptide hormone release from isolated nerve endings of the neural lobe of rat pituitaries (neurosecretosomes) was measured in a perfusion system. Tetanus toxin inhibited depolarization-evoked release of oxytocin and vasopressin in a time- and dose-dependent manner. At 1 microgram/ml, tetanus toxin blocked stimulated release by 85%. Tetanus toxin that was preincubated with a neutralizing monoclonal antibody or heated to 100 degrees C had no effect on hormone release. The ionophores A23187 and ionomycin were potent stimulators of hormone release in control nerve endings, but were not able to overcome the effect of tetanus toxin in intoxicated nerve endings. 8-Bromo-cyclic GMP, which has been reported to reverse the action of tetanus toxin in PC12 cells, had no effect on the action of tetanus toxin in neurosecretosomes. Neurosecretosomes are the first system in which tetanus toxin has been shown to block release from peptidergic nerve terminals. They appear to be a valuable in vitro system for studying the biochemical mechanism of tetanus toxin action.  相似文献   

9.
Abstract— A toxin purified from crude venom of the scorpion L. quinquestriatus releases [3H]norepinephrine from synaptosomes prepared from rat brain. The toxin-induced release is dependent on duration of exposure and concentration of toxin in the medium. The absence of calcium in the medium diminishes toxin-induced release but does not abolish it. Toxin-induced release is diminished by tetrodotoxin or, to a lesser extent, by desmethylimipramine. Since the released tritium is present predominantly as norepinephrine, it appears that toxin-induced release is similar to that produced by veratradine or tyramine and is distinct from reserpine induced release.  相似文献   

10.
Leptinotoxin-h (LPTx), a neurotoxin (otherwise designated beta-leptinotarsin-h) known to stimulate the release of neurotransmitters from synapses, was purified from the hemolymph of the potato beetle, Leptinotarsa haldemani, by a simplification of the procedure originally developed by Crosland et al. [Biochemistry 23, 734-741, (1984)]. Highly and partially purified preparations of the toxin were applied to guinea pig synaptosomes and neurosecretory (PC12) cells. When applied in a Ca2+-containing Ringer medium, at concentrations in the 10(-11) - 10(-10) M range, the toxin induced: (a) rapid depolarization of the plasma membrane, which was not inhibited by organic blockers of voltage-dependent Na+ and Ca2+ channels (tetrodotoxin or verapamil); (b) large 45Ca influx; and (c) increased free cytosolic Ca2+ concentration. These latter two effects were unaffected by verapamil. In Ca2+-free media the effects of the toxin were different in the two systems investigated. In synaptosomes, depolarization was still observed, even if the toxin concentrations needed were higher (approximately 10X) than those effective in the complete medium. In contrast, in PC12 cells no effect of the toxin on membrane potential was observed. Binding of LPTx to its cellular targets could not be investigated directly because the toxin was inactivated by the procedures used for its labeling. Indirect evidence suggested however that Ca2+ is necessary for toxin binding to PC12 cells. Interaction of LPTx with air/water interfaces, as well as with cholesterol/phospholipid mono- and bilayer membranes was investigated. The results indicate that the toxin has affinity for hydrophobic surfaces, but lacks the capacity to insert across membranes unless transpositive voltage is applied. Our results are inconsistent with the previous conclusion of Crosland et al. (1984), who suggested opening of the Ca2+ channel as the mechanism of action of LPTx. The effects of the toxin resemble those of alpha-latrotoxin (alpha-LTx) of the black widow spider venom, and therefore the two toxins might act by similar mechanisms. However, the sites recognized by the two toxins might be different, because LPTx does not inhibit alpha-LTx binding.  相似文献   

11.
Electrophysiological analysis of the effects of scorpion toxin I, one of the neurotoxins from the venom of the scorpion Androctonus australis Hector, upon crayfish neuromuscular junctions has shown that the toxin strongly associates with the nerve terminal to stimulate release of neurotransmitters.The biochemical approach has shown that the binding of scorpion toxin I to rat brain synaptosomes is accompanied by a decrease in their capacity to accumulate γ-aminobutyric acid. The main effect of the toxin is to stimulate neurotransmitter release. The apparent dissociation constant of the toxin-receptor complex is 0.1–0.2 μM at 22 °C. The rate of dissociation is so slow that complex formation seems to be quasi-irreversible. The “quasi-irreversibility” has also been observed in electrophysiological experiments with the crayfish neuromuscular junction. Tetrodotoxin prevents scorpion toxin I action if it is incubated with synaptosomes or with crayfish neuromuscular junctions before scorpion toxin I application. Tetrodotoxin does not reverse scorpion toxin action if it is added to the preparation after scorpion toxin I. Prevention of scorpion toxin action by tetrodotoxin permits measurements of binding characteristics of this toxin to synaptosomes. The dissociation constant of the tetrodotoxin-receptor complex is 2.2 nM at 22 °C. No cooperativity is observed in the binding. Because of its high affinity for synaptosomes (and the “quasi-irreversibility” of the binding), scorpion toxin I appears to be a potentially excellent tool for further studies of the molecular mechanism of neurotransmitter secretion.  相似文献   

12.
Seventeen murine monoclonal antibodies (mAbs) against horseshoe crab clotting factor, factor C, were prepared and characterized. When the binding sites of these mAbs were analyzed by immunoblotting, ten mAbs recognized nonreduced factor C, five mAbs were directed against the heavy chain, and two mAbs were directed against the B chain. Three mAbs, 1H4, 2C12, and 2A7, one selected from each group, were used for further study. The mAb 1H4, which recognized only nonreduced factor C molecule, inhibited the factor C activity in a dose-dependent manner. It also inhibited lipopolysaccharide (LPS)- and alpha-chymotrypsin-mediated activations of the zymogen factor C, suggesting that 1H4 binds close to the active site and/or the substrate-binding site located in the serine protease domain (B chain) of factor C. On the other hand, 2C12 and 2A7 recognized, respectively, an epitope located in the heavy and the B chains, and inhibited LPS-mediated activation of factor C, but not alpha-chymotrypsin-mediated activation of factor C or factor C activity. Both F(ab')2 and Fab' fragments derived from 2C12 inhibited LPS-mediated activation in the same manner. These three mAbs did not bind with LPS, although a factor C-mAb complex was able to bind LPS, suggesting that the LPS-mediated activation of the zymogen factor C was induced through intermolecular interaction between the LPS-bound factor C molecules. The dissociation constants (Kd) for 1H4, 2C12, and 2A7 binding to factor C were determined as 1.9 x 10(-9), 0.6 x 10(-10), and 1.8 x 10(-10) M, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
9C2 is a murine monoclonal IgG that participates in the neutralization of Androctonus australis hector scorpion venom. It recognizes AahI and AahIII, two of the three main neurotoxins responsible for almost all the toxicity of the venom when injected into mammals. Using PCR we cloned the antibody variable region coding genes from 9C2 hybridoma cells and constructed a gene encoding a single-chain antibody variable fragment molecule (scFv). This scFv was produced in the periplasm of Escherichia coli in a soluble and functional form and purified in a single step using protein L-agarose beads yielding 1-2 mg.L(-1) of bacterial culture. scFv9C2 was predominantly monomeric but also tended to form dimeric and oligomeric structures, all capable of binding toxin AahI. The affinity of scFv and the parental mAb for toxin AahI and homologous toxin AahIII was of the same magnitude, in the nanomolar range. Similarly, purified forms of scFv9C2 completely inhibited the binding of toxin AahI to rat brain synaptosomes. Finally, scFv9C2 was efficient in protecting mice against the toxic effects of AahI after injection of the toxin and scFv to mice by the intracerebroventricular route in a molar ratio as low as 0.36 : 1. Thus, we produced a recombinant scFv that reproduces the recognition properties of the parent antibody and neutralizes the scorpion neurotoxin AahI, thereby opening new prospects for the treatment of envenomation.  相似文献   

14.
Nine monoclonal antibodies (mAb) to Clostridium difficile toxin A were produced. The isotype of one mAb (37B5) was IgG2b, kappa, and that of the other eight mAbs was IgM, kappa. Immunoblot analysis after non-denatured PAGE showed that with the exception of one mAb (112G6) all mAbs gave a positive reaction with the 540 kDa band of toxin A. Immunoblot analysis showed that four mAbs (2E15, 3B4, 37B5 and 49C4) gave a positive reaction with the 240 kDa major band of toxin A. In neutralisation tests with these mAbs for enterotoxicity, mouse lethality, haemagglutination activity and cytotoxicity, 37B5 neutralised enterotoxicity in a rabbit ileal loop response test but did not neutralise any other biological activities. None of the other eight mAbs showed any neutralising activities at all.  相似文献   

15.
《MABS-AUSTIN》2013,5(1):34-46
Monoclonal antibodies (mAb) have become a mainstay in tumor therapy. Clinical responses to mAb therapy, however, are far from optimal, with many patients presenting native or acquired resistance or suboptimal responses to a mAb therapy. MAbs exert antitumor activity through different mechanisms of action and we propose here a classification of these mechanisms. In many cases mAbs need to interact with immune cells to exert antitumor activity. We summarize evidence showing that interactions between mAbs and immune cells may be inadequate for optimal antitumor activity. This may be due to insufficient tumor accumulation of mAbs or immune cells, or to low-affinity interactions between these components. The possibilities to improve tumor accumulation of mAbs and immune cells, and to improve the affinity of the interactions between these components are reviewed. We also discuss future directions of research that might further improve the therapeutic efficacy of antitumor mAbs.  相似文献   

16.
Nucleotides are released not only from neurons, but also from various other types of cells including fibroblasts, epithelial, endothelial and glial cells. While ATP release from non-neural cells is frequently Ca2+ independent and mostly non-vesicular, neuronal ATP release is generally believed to occur via exocytosis. To evaluate whether nucleotide release from neuroendocrine cells might involve a non-vesicular component, the autocrine/paracrine activation of P2Y12 receptors was used as a biosensor for nucleotide release from PC12 cells. Expression of a plasmid coding for the botulinum toxin C1 light chain led to a decrease in syntaxin 1 detected in immunoblots of PC12 membranes. In parallel, spontaneous as well as depolarization-evoked release of previously incorporated [3H]noradrenaline from transfected cells was significantly reduced in comparison with the release from untransfected cells, thus indicating that exocytosis was impaired. In PC12 cells expressing the botulinum toxin C1 light chain, ADP reduced cyclic AMP synthesis to the same extent as in non-transfected cells. Likewise, the enhancement of cyclic AMP synthesis either due to the blockade of P2Y12 receptors or due to the degradation of extracellular neucleotides by apyrase was not different between non-transfected and botulinum toxin C1 light chain expressing cells. However, the inhibition of cyclic AMP synthesis caused by depolarization-evoked release of endogenous nucleotides was either abolished or greatly reduced in cells expressing the botulinum toxin C1 light chain. Together, these results show that spontaneous nucleotide release from neuroendocrine cells may occur independently of vesicle exocytosis, whereas depolarization-evoked nucleotide release relies predominantly on exocytotic mechanisms.  相似文献   

17.
To identify and gain a better understanding of the cadherin-like receptor-binding site on Bacillus thuringiensis Cry toxins, it is advantageous to use Cry1Aa toxin, because its 3D structure is known. Therefore, Cry1Aa toxin was used to examine the locations of cadherin-like protein-binding sites. Initial experiments examining the binding compatibility for Cry1Aa toxin of partial fragments of recombinant proteins of a 175kDa cadherin-like protein from Bombyx mori (BtR175) and another putative receptor for Cry1Aa toxin, amino peptidaseN1, from Bo.mori (BmAPN1), suggested that their binding sites are close to each other. Of the seven mAbs against Cry1Aa toxin, two mAbs were selected that block the binding site for BtR175 on Cry1Aa toxin: 2A11 and 2F9. Immunoblotting and alignment analyses of four Cry toxins revealed amino acids that included the epitope of mAb 2A11, and suggested that the area on Cry1Aa toxin blocked by the binding of mAb 2A11 is located in the region consisting of loops2 and 3. Two Cry1Aa toxin mutants were constructed by substituting a Cys on the area blocked by the binding of mAb 2A11, and the small blocking molecule, N-(9-acridinyl)maleimide, was introduced at each Cys substitution to determine the BtR175-binding site. Substitution of Tyr445 for Cys had a crippling effect on binding of Cry1Aa toxin to BtR175, suggesting that Tyr445 may be in or close to the BtR175-binding site. Monoclonal antibodies that blocked the binding site for BtR175 on Cry1Aa toxin inhibited the toxicity of Cry1Aa toxin against Bo.mori, indicating that binding of Cry1Aa toxin to BtR175 is essential for the action of Cry1Aa toxin on the insect.  相似文献   

18.
The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.  相似文献   

19.
Summary Clostridium botulinum type toxin A (BoTx) blocks stimulus-induced acetylcholine (ACh) release from presynaptic nerve terminals at peripheral neuromuscular junctions. However, the detailed mechanism of this effect remains elusive. One obstacle in solving this problem is the lack of a suitable in vitro homogenous cholinergic neuronal model system. We studied the clonal pheochromocytoma PC12 cell line to establish such a model. PC12 cells were differentiated in culture by treatment with 50 ng/ml nerve growth factor (NGF) for 4 days to enhance cellular ACh synthesis and release properties. Stimulation of these cells with high K+ (80 mM) in the perfusion medium markedly increased calcium-dependent [3H]ACh release compared to undifferentiated cells. Stimulated [3H]ACh release was totally inhibited by pretreatment of cells with 2 nM BoTx for 2 h. BoTx inhibition of [3H]ACh release was time- and concentration-dependent. A 50% inhibition was obtained after 2 h incubation with a low (0.02 nM) toxin concentration. The time required for 2 nM BoTx to cause a measurable inhibition (18%) of stimulated [3H]ACh release was 30 min. Botulinum toxin inhibition of stimulated ACh release was prevented by toxin antiserum and heat treatment, suggesting the specificity of the toxin effect. Our results show that by differentiation with NGF, PC12 cells can be shifted from an insensitive to a sensitive state with respect to BoTx inhibition of stimulated ACh release. This cell line, therefore, may serve as a valuable in vitro cholinergic model system to study the mechanism of action of BoTx.  相似文献   

20.
Antibodies to platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitate targeted drug delivery to endothelial cells by "vascular immunotargeting." To define the targeting quantitatively, we investigated the endothelial binding of monoclonal antibodies (mAbs) to extracellular epitopes of PECAM-1. Surprisingly, we have found in human and mouse cell culture models that the endothelial binding of PECAM-directed mAbs and scFv therapeutic fusion protein is increased by co-administration of a paired mAb directed to an adjacent, yet distinct PECAM-1 epitope. This results in significant enhancement of functional activity of a PECAM-1-targeted scFv-thrombomodulin fusion protein generating therapeutic activated Protein C. The "collaborative enhancement" of mAb binding is affirmed in vivo, as manifested by enhanced pulmonary accumulation of intravenously administered radiolabeled PECAM-1 mAb when co-injected with an unlabeled paired mAb in mice. This is the first demonstration of a positive modulatory effect of endothelial binding and vascular immunotargeting provided by the simultaneous binding a paired mAb to adjacent distinct epitopes. The "collaborative enhancement" phenomenon provides a novel paradigm for optimizing the endothelial-targeted delivery of therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号