首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Troponin is the regulatory protein of striated muscle. Without Ca2+, the contraction of striated muscle is inhibited. Binding of Ca2+ to troponin activates contraction. The location of troponin on the thin filaments and its relation to the regulatory mechanism has been unknown, though the Ca2+-induced dislocation of tropomyosin has been studied. By binding troponin(C+I) to actin in an almost stoichiometric ratio and reconstituting actin-tropomyosin-troponin(C+I) filaments, we reconstructed the three-dimensional structure of actin-tropomyosin-troponin(C+I) with or without Ca2+ from electron cryomicrographs to about 2.5 or 3 nm resolution, respectively. Without Ca2+, the three-dimensional map reveals the extra-density region due to troponin(C+I), which extends perpendicularly to the helix axis and covers the N-terminal and C-terminal regions of actin. In the presence of Ca2+, the C-terminal region of actin became more exposed, and troponin(C+I) became V-shaped with one arm extending towards the pointed end of the actin filament. This structure can be considered to show the location of troponin(C+I) in at least one of the states of skeletal muscle thin filaments. These Ca2+-induced changes of troponin(C+I) provide a clue to the regulatory mechanism of contraction.  相似文献   

2.
Calcium-induced weakening of skeletal muscle Z-disks   总被引:1,自引:0,他引:1  
Structural changes in the Z disk were sensitively detected by measuring fragmentation indexes of myofibrils. The Ca2+-induced weakening of Z disks and the Z-disk removal by muscle calpain could be clearly distinguished by using muscle calpastatin, an endogenous inhibitor of muscle calpain. The Ca2+-induced weakening of Z disks occurred without concomitant release of alpha-actinin and had maxima at 10(-4) M Ca2+ and 45 degrees C and a minimum at pH 6.5, while the Z-disk removal by calpain had similar optima to the caseinolytic activity of calpain, at 10(-3) M Ca2+, 20 degrees C and pH 7.0. The Ca2+-induced weakening of Z disks is therefore not due to the proteolytic action of calpain. In postmortem muscle, moreover, the Ca2+-induced weakening of Z disks was inferred to be predominate over calpain proteolysis, and therefore to be the major factor in the characteristic weakening of Z disks.  相似文献   

3.
Evidence that nebulin is a protein-ruler in muscle thin filaments   总被引:14,自引:0,他引:14  
Partial amino acid sequence was obtained from the massive myofibrillar protein nebulin. This consists of repeating motifs of about 35 residues and super-repeats of 7 x 35 = 245 residues. The repeat-motifs are likely to be largely alpha-helical and to interact with both actin and tropomyosin in thin filaments. Nebulin from different species was found to vary in size in proportion to filament length. The data are consistent with the proposal that nebulin acts as a protein-ruler to regulate precise thin filament assembly.  相似文献   

4.
Nebulin and dystrophin are two high-molecular-mass skeletal muscle proteins that have both been associated with the defective gene in Duchenne muscular dystrophy, although the function of neither protein is known. Other high-molecular-mass, calmodulin-binding proteins have recently been implicated in regulating calcium release from skeletal muscle. Western blots of human skeletal muscle biopsy samples were probed with biotinylated calmodulin; nebulin was identified as a prominent high-molecular-mass calmodulin-binding protein but dystrophin did not bind detectable amounts of biotinylated calmodulin. Dystrophin was absent in a Duchenne muscle biopsy.  相似文献   

5.
Z-Line of skeletal muscle is a complex protein network that likely plays an important role in signaling and muscle homeostasis. We used the yeast two-hybrid system to search for potential novel ligands of the Z-line portion of nebulin. We found that the C-terminal region of nebulin (residues 6457-6528) interacted with the C-terminus of archvillin (residues 1419-1687). Archvillin is a membrane skeletal protein that localizes to costameres, specialized adhesion sites in muscle. The binding sites between nebulin and archvillin were characterized using the yeast two-hybrid system, in vitro pull-down assays, and colocalization experiments in COS-7 cells. Our data suggest a model in which archvillin attaches directly to the Z-line through an interaction with the nebulin C-terminus. The interaction between nebulin and archvillin may provide a direct link between the sarcolemma and myofibrillar Z-lines.  相似文献   

6.
Frog skeletal muscle thick filaments are three-stranded   总被引:11,自引:7,他引:4       下载免费PDF全文
A procedure has been developed for isolating and negatively staining vertebrate skeletal muscle thick filaments that preserves the arrangement of the myosin crossbridges. Electron micrographs of these filaments showed a clear periodicity associated with crossbridges with an axial repeat of 42.9 nm. Optical diffraction patterns of these images showed clear layer lines and were qualitatively similar to published x-ray diffraction patterns, except that the 1/14.3-nm meridional reflection was somewhat weaker. Computer image analysis of negatively stained images of these filaments has enabled the number of strands to be established unequivocally. Both reconstructed images from layer line data and analysis of the phases of the inner maxima of the first layer line are consistent only with a three-stranded structure and cannot be reconciled with either two- or four-stranded models.  相似文献   

7.
Separated thick filaments have been prepared for electron microscopy by a method involving freeze-drying and shadowing. In the resulting filaments the individual heads of myosin molecules can be seen surrounding the filament shaft, which appears relatively smooth. Pairs of heads can frequently be seen to be emanating from a common origin. Myosin heads are found at distances up to 500 Å from the edge of the shaft.  相似文献   

8.
Extra actin filaments at the periphery of skeletal muscle myofibrils.   总被引:2,自引:0,他引:2  
Myofibrils isolated from a variety of vertebrate muscle fibers have a set of peripheral filaments associated with the periphery of the Z line free to move away from the surface of the myofibril. Decoration with myosin subfragment 1 shows that these are actin filaments.  相似文献   

9.
X-ray intensity data to 1.8 Å resolution were collected from native trigonal crystals of bovine trypsinogen. The orientation and position of the trypsinogen molecules within their crystal cells were determined by Patterson search techniques using the refined model of bovine trypsin (Bode &; Schwager, 1975), and by subsequent R factor refinement. The translation functions allowed discrimination between the enantiomorphic space groups P3221 and P3121. After one constrained crystallographic refinement cycle, which reduced the crystallographic reliability factor (R) from 35% to 31%, a preliminary difference Fourier map showed several interesting details. Several refinement cycles reduced the value of R to 23%. The overall chain folding is very similar to trypsin. The chain segments, including residues 184 to 1932 and 217 to 223, which form the specificity pocket in trypsin, are flexible in trypsinogen. The autolysis loop is partially mobile between residues 142 and 152. There is no continuing electron density for the N terminal residues preceding Tyr20. This indicates that the N terminus may be only weakly fixed to the rest of the molecule or may even float freely in solution.  相似文献   

10.
Cross-linking of myosin subfragment 1 (S1) with a molar excess of actin in vitro reveals the presence of an actin-S1-actin complex. It is absolutely essential that actin be present in molar excess over S1 so that the decoration of F-actin with S1 be incomplete. However, the excess of actin may not be available in the overlap zone of sarcomeres of skeletal muscle. We therefore found it necessary to test for the presence of the actin-S1-actin complex in vivo. Myofibrils from rabbit skeletal muscle were reacted with zero-length cross-linker, the products were resolved by polyacrylamide gel electrophoresis and analyzed by Western blots using antibodies against actin and against heavy and light chains of myosin. The cross-linking produced the evidence of formation of actin-S1-actin complex.  相似文献   

11.
Mitosis and intermediate-sized filaments in developing skeletal muscle   总被引:27,自引:54,他引:27       下载免费PDF全文
A new class of filaments intermediate in diameter between actin and myosin filaments has been demonstrated in skeletal muscle cells cultured from chick embryos. These filaments, which account for the majority of free filaments, average 100 A in diameter. They may run for more than 2 µ in a single section and can be distinguished in size and appearance from the thick and thin filaments assembled into myofibrils. The 100-A filaments are seen scattered throughout the sarcoplasm at all stages of development and show no obvious association with the myofibrils. The 100-A filaments are particularly conspicuous in myotubes fragmented by the mitotic inhibitors, colchicine and Colcemid. In addition, filaments similar in size and appearance to those found in myotubes are present in fibroblasts, chondrocytes, and proliferating mononucleated myoblasts. The 100-A filaments are present in cells arrested in metaphase by mitotic inhibitors. Definitive thick (about 150 A) or thin (about 60 A) myofilaments are not found in skeletal myogenic cells arrested in metaphase. Myogenic cells arrested in metaphase do not bind fluorescein-labeled antibody directed against myosin or actin. For these reasons, it is concluded that not all "thin" filaments in myogenic cells are uniquely associated with myogenesis.  相似文献   

12.
The mechanical compliance (reciprocal of stiffness) of thin filaments was estimated from the relative compliance of single, skinned muscle fibers in rigor at sarcomere lengths between 1.8 and 2.4 micron. The compliance of the fibers was calculated as the ratio of sarcomere length change to tension change during imposition of repetitive cycles of small stretches and releases. Fiber compliance decreased as the sarcomere length was decreased below 2.4 micron. The compliance of the thin filaments could be estimated from this decrement because in this range of lengths overlap between the thick and thin filaments is complete and all of the myosin heads bind to the thin filament in rigor. Thus, the compliance of the overlap region of the sarcomere is constant as length is changed and the decrease in fiber compliance is due to decrease of the nonoverlap length of the thin filaments (the I band). The compliance value obtained for the thin filaments implies that at 2.4-microns sarcomere length, the thin filaments contribute approximately 55% of the total sarcomere compliance. Considering that the sarcomeres are approximately 1.25-fold more compliant in active isometric contractions than in rigor, the thin filaments contribute approximately 44% to sarcomere compliance during isometric contraction.  相似文献   

13.
Interaction of isolated bacterial flagellum filaments (BFF) and intact flagella from E. coli MS 1350 and B. brevis G.-B.p+ with rabbit skeletal myosin was studied. BFF were shown to coprecipitate with myosin (but not with isolated myosin rod) at low ionic strength, that is, under conditions of myosin aggregation. The data of electron microscopy indicate that filaments of intact bacterial flagella interact with isolated myosin heads (myosin subfragment 1, S1), and this interaction is fully prevented by addition of Mg2+ -ATP. Addition of BFF inhibited both K+ -EDTA- and Ca2+ -ATPase activity of skeletal muscle myosin, but had no effect on its Mg2+ -ATPase activity. Monomeric flagellin did not coprecipitate with myosin and had no effect on its ATPase activities. BFF were shown to compete with F-actin in myosin binding. It is concluded that BFF interact with myosin heads and affect their ATPase activity. Thus, BFF composed of a single protein flagellin are in many respects similar to actin filaments. Common origin of actin and flagellin may be a reason for this similarity.  相似文献   

14.
Summary The ultrastructural organization of myofilaments in skeletal muscle was studied in four mammalian species (mouse, rat, hamster, goat). In all these species, myofibrils showing irregularly distributed arrays of a variable number of actin filaments (from 6 to 11) were observed. The proportion of such myofibrils and the predominant patterns of actin filaments varied from one species to another. These results are in agreement with those previously reported for human skeletal muscle.  相似文献   

15.
Recent studies have demonstrated the activation of skeletal muscle DNA fragmentation in some catabolic conditions. In an attempt to elucidate if sepsis (a catabolic state) was also associated with muscle apoptosis, sepsis was induced by cecal ligation and puncture, and the results clearly show an induction of DNA fragmentation in gastrocnemius muscle following the induction of the septic state. Administration of rolipram (an inhibitor of tumour necrosis factor-a (TNF-alpha) synthesis) to septic rats clearly prevented the increased DNA fragmentation, suggesting that TNF-alpha is involved in the activation of the apoptotic events in septic rat skeletal muscle.  相似文献   

16.
《The Journal of cell biology》1988,107(6):2199-2212
Nebulin, a giant myofibrillar protein (600-800 kD) that is abundant (3%) in the sarcomere of a wide range of skeletal muscles, has been proposed as a component of a cytoskeletal matrix that coexists with actin and myosin filaments within the sarcomere. Immunoblot analysis indicates that although polypeptides of similar size are present in cardiac and smooth muscles at low abundance, those proteins show no immunological cross-reactivity with skeletal muscle nebulin. Gel analysis reveals that nebulins in various skeletal muscles of rabbit belong to at least two classes of size variants. A monospecific antibody has been used to localize nebulin by immunoelectron microscopy in a mechanically split rabbit psoas muscle fiber preparation. Labeled split fibers exhibit six pairs of stripes of antibody-imparted transverse densities spaced at 0.1-1.0 micron from the Z line within each sarcomere. These epitopes maintain a fixed distance to the Z line irrespective of sarcomere length and do not exhibit the characteristic elastic stretch-response of titin epitopes within the I band domain. It is proposed that nebulin constitutes a set of inextensible filaments attached at one end to the Z line and that nebulin filaments are in parallel, and not in series, with titin filaments. Thus the skeletal muscle sarcomere may have two sets of nonactomyosin filaments: a set of I segment-linked nebulin filaments and a set of A segment-linked titin filaments. This four-filament sarcomere model raises the possibility that nebulin and titin might act as organizing templates and length- determining factors for actin and myosin respectively.  相似文献   

17.
《The Journal of cell biology》1984,99(4):1391-1397
Indirect immunofluorescence microscopy of highly stretched skinned frog semi-tendinous muscle fibers revealed that connectin, an elastic protein of muscle, is located in the gap between actin and myosin filaments and also in the region of myosin filaments except in their centers. Electron microscopic observations showed that there were easily recognizable filaments extending from the myosin filaments to the I band region and to Z lines in the myofibrils treated with antiserum against connectin. In thin sections prepared with tannic acid, very thin filaments connected myosin filaments to actin filaments. These filaments were also observed in myofibrils extracted with a modified Hasselbach-Schneider solution (0.6 M KCl, 0.1 M phosphate buffer, pH 6.5, 2 mM ATP, 2 mM MgCl2, and 1 mM EGTA) and with 0.6 M Kl. SDS PAGE revealed that connectin (also called titin) remained in extracted myofibrils. We suggest that connectin filaments play an important role in the generation of tension upon passive stretch. A scheme of the cytoskeletal structure of myofibrils of vertebrate skeletal muscle is presented on the basis of our present information of connectin and intermediate filaments.  相似文献   

18.
Thin sections of rapidly frozen and freeze-substituted rabbit glycerinated muscle fibres loaded with myosin subfragment-1 were used to examine a three-dimensional arrangement of thin filaments in vertebrate skeletal muscle. Clearer images of the "arrowhead" structure were obtained when specimens were freeze-substituted first in a tannic acid solution and then in an OsO4 solution. The images obtained showed that the arrowheads were aligned laterally. This indicates that all the thin filaments have the same rotational orientation in a half sarcomere of rabbit skeletal muscle in the rigor state.  相似文献   

19.
Isolation and composition of thick filaments from rabbit skeletal muscle   总被引:12,自引:0,他引:12  
A method has been developed for the isolation of thick filaments from rabbit skeletal muscle. We found that the thick filaments of this muscle are readily dispersed in the presence of a relaxing medium if the M and Z-line structures are first extracted in a low-salt solvent system. Thick filaments were separated from thin filaments by zone sedimentation in a 10% to 30% glycerol density gradient. The isolated filaments are homogeneous in length (1.5 to 1.6 μm) and retain the physical characteristics of these structures observed in sectioned muscle. Gel electrophoresis of thick filaments in the presence of sodium dodecyl sulfate showed a band of C-protein as well as bands with mobilities characteristic of the heavy and light chains of myosin. No other protein species was detected in these experiments. Thus our results provide evidence against the presence of a special protein component which would serve as the core of the skeletal thick filament structure. From the relative stain density of bands, the molar ratio of C-protein to myosin was estimated to be 1 to 5.8.  相似文献   

20.
Muscle needs an elastic framework to maintain its mechanical stability. Removal of thin filaments in rabbit skeletal muscle with plasma gelsolin has revealed the essential features of elastic filaments. The selective removal of thin filaments was confirmed by staining with phalloidin-rhodamine for fluorescence microscopy, examination of arrowhead formation with myosin subfragment 1 by electron microscopy, and analysis by SDS-PAGE. Thin section electron microscopy revealed the elastic fine filaments (approximately 4 nm in diameter) connecting thick filaments and the Z line. After removal of thin filaments, both rigor stiffness and active tension generation were lost, but the resting tension remained. These observations indicate that the thin filament-free fibers maintain a framework composed of the serial connections of thick filaments, the elastic filaments, and the Z line, which gives passive elasticity to the contractile system of skeletal muscle. The resting tension that remained in the thin filament-free fibers was decreased by mild trypsin treatment. The only protein component that was digested in parallel with the decrease in the resting tension and the disappearance of the elastic filaments was alpha-connectin (also called titin 1), which was transformed from the alpha to the beta form (from titin 1 to 2, respectively). Thus, we conclude that the main protein component of the elastic filaments is alpha-connectin (titin 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号