首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We showed previously that the expression of 7-integrin in aortic vascular smooth muscle cells (VSMC) is enhanced in a rat model of atherosclerosis. In the present study, we investigated the effects of platelet-derived growth factor (PDGF) on 7-integrin expression and VSMC adhesion and migration. Expression of the 7-integrin gene was determined by real-time RT-PCR, whereas protein levels were determined by fluorescence-activated cell sorting analysis. PDGF increased 7 cell surface protein expression (12 and 24 h: 3.3 ± 0.8- and 3.6 ± 0.4-fold, P < 0.05 vs. control) and mRNA levels (24 h: 3.1-fold, P < 0.05 vs. control) in a time-dependent manner. Actinomycin D and cycloheximide attenuated PDGF-induced increases in 7-integrin, indicating the involvement of de novo mRNA and protein synthesis. Treatment with the MAPK inhibitors PD-98059, SP-600125, and SB-203580 attenuated PDGF-induced increases in mRNA. In contrast, PD-98059 and SP-600125, but not SB-203580, attenuated PDGF-induced increases in cell surface protein levels. PDGF-treated VSMC adhered to laminin more efficiently (42 ± 6% increase, P < 0.01), and this increase was partially inhibited by anti-7-integrin function-blocking antibody. However, PDGF did not alter migration on laminin, and there was no effect of the anti-7-integrin function-blocking antibody on basal or PDGF-stimulated migration. Immunofluorescence imaging revealed an increase in 7-integrin distribution along the stress fibers. Together, these observations indicate that PDGF enhances 7-integrin expression in VSMC and promotes 7-integrin-mediated adhesion to laminin. vascular injury; laminin; mitogen-activated protein kinase  相似文献   

2.
We showed previously that enteropathogenic Escherichia coli (EPEC) infection of intestinal epithelial cells induces inflammation by activating NF-B and upregulating IL-8 expression. We also reported that extracellular signal-regulated kinases (ERKs) participate in EPEC-induced NF-B activation but that other signaling molecules such as PKC may be involved. The aim of this study was to determine whether PKC is activated by EPEC and to investigate whether it also plays a role in EPEC-associated inflammation. EPEC infection induced the translocation of PKC from the cytosol to the membrane and its activation as determined by kinase activity assays. Inhibition of PKC by the pharmacological inhibitor rottlerin, the inhibitory myristoylated PKC pseudosubstrate (MYR-PKC-PS), or transient expression of a nonfunctional PKC significantly suppressed EPEC-induced IB phosphorylation. Although PKC can activate ERK, MYR-PKC-PS had no effect on EPEC-induced stimulation of this pathway, suggesting that they are independent events. PKC can regulate NF-B activation by interacting with and activating IB kinase (IKK). Coimmunoprecipitation studies showed that the association of PKC and IKK increased threefold 60 min after infection. Kinase activity assays using immunoprecipitated PKC-IKK complexes from infected intestinal epithelial cells and recombinant IB as a substrate showed a 2.5-fold increase in IB phosphorylation. PKC can also regulate NF-B by serine phosphorylation of the p65 subunit. Serine phosphorylation of p65 was increased after EPEC infection but could not be consistently attenuated by MYR-PKC-PS, suggesting that other signaling events may be involved in this particular arm of NF-B regulation. We speculate that EPEC infection of intestinal epithelial cells activates several signaling pathways including PKC and ERK that lead to NF-B activation, thus ensuring the proinflammatory response. inflammation; enteropathogenic Escherichia coli; nuclear factor-B; protein kinase C; IB kinase; extracellular signal-regulated kinase  相似文献   

3.
Changes in the synthesis and activity of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are associated with myocardial remodeling. Here we measured the expression and activity of MMPs and TIMPs, and tested the hypothesis that increased MMP activity plays a proapoptotic role in -adrenergic receptor (-AR)-stimulated apoptosis of adult rat ventricular myocytes (ARVMs). -AR stimulation (isoproterenol, 24 h) increased mRNA levels of MMP-2 and TIMP-1 while it decreased TIMP-2 mRNA levels as analyzed by real-time PCR. Western blot analysis, immunocytochemical analysis, in-gel zymography, and MMP-2 activity assay confirmed -AR-stimulated increases in MMP-2 protein levels and activity. Inhibition of MMPs using GM-6001 (a broad-spectrum inhibitor of MMPs), SB3CT (inhibitor of MMP-2), and purified TIMP-2 inhibited -AR-stimulated apoptosis as determined by TdT-mediated dUTP nick end labeling staining. Treatment with active MMP-2 alone increased the number of apoptotic cells. This increase in MMP-2-mediated apoptosis was inhibited by GM-6001 and SB3CT pretreatment. Coimmunoprecipitation studies indicated increased physical association of MMP-2 with 1-integrins after -AR stimulation. Inhibition of MMP-2 using SB3CT or stimulation of 1-integrin signaling using laminin inhibited the increased association of MMP-2 with 1-integrins. -AR stimulation increased poly-ADP-ribose-polymerase cleavage, which was inhibited by inhibition of MMP-2. These data suggest the following: 1) -AR stimulation increases MMP-2 expression and activity and inhibits TIMP-2 expression; 2) inhibition of MMPs, most likely MMP-2, inhibits -AR-stimulated apoptosis; and 3) the apoptotic effects of MMP-2 may be mediated, at least in part, via its interaction with 1 integrins and poly-ADP-ribose-polymerase cleavage. integrins; poly-ADP-ribose-polymerase  相似文献   

4.
We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-B and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-B in columnar but not basal cells. IL-1 + TNF- elicited responses similar to those of flagellin. Basolateral flagellin or IL-1 + TNF- caused 1.5- to 4-fold larger responses, consistent with the fact that NF-B activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF- receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1 + TNF- in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1, and TNF- do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1, and TNF-. toll-like receptor; nuclear factor-B; interleukin-8; tumor necrosis factor; interleukin-1  相似文献   

5.
Insulin resistance, a major factor in the development of type 2 diabetes, is known to be associated with defects in blood vessel relaxation. The role of Akt on insulin-induced relaxation of vascular smooth muscle cell (VSMC) was investigated using siRNA targeting Akt (siAKTc) and adenovirus constructing myristilated Akt to either suppress endogenous Akt or overexpress constitutively active Akt, respectively. siAKTc decreased both basal and insulin-induced phosphorylations of Akt and glycogen synthase kinase 3, abolishing insulin-induced nitric oxide synthase (iNOS) expression. cGMP-dependent kinase 1 (cGK1) and myosin-bound phosphatase (MBP) activities, both downstream of iNOS, were also decreased. siAKTc treatment resulted in increased insulin and ANG II-stimulated phosphorylation of contractile apparatus, such as MBP substrate (MYPT1) and myosin light chain (MLC20), accompanied by increased Rho-associated kinase (ROK) activity, demonstrating the requirement of Akt for insulin-induced vasorelaxation. Corroborating these results, constitutively active Akt upregulated the signaling molecules involved in insulin-induced relaxation such as iNOS, cGK1, and MBP activity, even in the absence of insulin stimulation. On the contrary, the contractile response involving the phosphorylation of MYPT1 and MLC20, and increased ROK activity stimulated by ANG II were all abolished by overexpressing active Akt. In conclusion, we demonstrated here that insulin-induced VSMC relaxation is dependent on Akt activation via iNOS, cGK1, and MBP activation, as well as the decreased phosphorylations of MYPT1 and MLC20 and decreased ROK activity. angiotensin II; myosin-bound phosphatase substrate; inducible nitric oxide synthase; guanosine 3',5'-cyclic monophosphate-dependent kinase 1; Rho-associated kinase  相似文献   

6.
Several related isoforms of p38MAPK have been identified and cloned in many species. Although they all contain the dual phosphorylation motif TGY, the expression of these isoforms is not ubiquitous. p38 and -2 are ubiquitously expressed, whereas p38 and - appear to have more restricted expression. Because there is evidence for selective activation by upstream kinases and selective preference for downstream substrates, the functions of these conserved proteins is still incompletely understood. We have demonstrated that the renal mesangial cell expresses the mRNA for all the isoforms of p38MAPK, with p38 mRNA expressed at the highest level, followed by p38 and the lowest levels of expression by p382 and -. To determine the functional effects of these proteins on interleukin (IL)-1-induced inducible nitric oxide synthase (iNOS) expression, we transduced TAT-p38 chimeric proteins into renal mesangial cells and assessed the effects of wild-type and mutant p38 isoforms on ligand induced iNOS expression. We show that whereas p38 and - had minimal effects on iNOS expression, p38 and -2 significantly altered its expression. p38 mutant and p382 wild-type dose dependently inhibited IL-1-induced iNOS expression. These data suggest that p38 and 2 have reciprocal effects on iNOS expression in the mesangial cell, and these observations may have important consequences for the development of selective inhibitors targeting the p38MAPK family of proteins. TAT proteins; p38 MAPK; inducible nitric oxide synthase; mesangial cell; interleukin-1  相似文献   

7.
Trefoil factor 3 (intestinal trefoil factor) is a cytoprotective factor in the gut. Herein we compared the effect of trefoil factor 3 with tumor necrosis factor- on 1) activation of NF-B in intestinal epithelial cells; 2) expression of Twist protein (a molecule essential for downregulation of nuclear factor-B activity in vivo); and 3) production of interleukin-8. We showed that Twist protein is constitutively expressed in intestinal epithelial cells. Tumor necrosis factor- induced persistent degradation of Twist protein in intestinal epithelial cells via a signaling pathway linked to proteasome, which was associated with prolonged activation of NF-B. In contrast to tumor necrosis factor, trefoil factor 3 triggered transient activation of NF-B and prolonged upregulation of Twist protein in intestinal epithelial cells via an ERK kinase-mediated pathway. Unlike tumor necrosis factor-, transient activation of NF-B by trefoil factor 3 is not associated with induction of IL-8 in cells. To examine the role of Twist protein in intestinal epithelial cells, we silenced the Twist expression by siRNA. Our data showed that trefoil factor 3 induced interleukin-8 production after silencing Twist in intestinal epithelial cells. Together, these observations indicated that 1) trefoil factor 3 triggers a diverse signal from tumor necrosis factor- on the activation of NF-B and its associated molecules in intestinal epithelial cells; and 2) trefoil factor 3-induced Twist protein plays an important role in the modulation of inflammatory cytokine production in intestinal epithelial cells. trefoil factor 3; signal transduction  相似文献   

8.
The decreased expression of the nitric oxide (NO) receptor, soluble guanylyl cyclase (sGC), occurs in response to multiple stimuli in vivo and in cell culture and correlates with various disease states such as hypertension, inflammation, and neurodegenerative disorders. The ability to understand and modulate sGC expression and cGMP levels in any of these conditions could be a valuable therapeutic tool. We demonstrate herein that the c-Jun NH2-terminal kinase JNK II inhibitor anthra[1,9-cd]pyrazol-6(2H)-one (SP-600125) completely blocked the decreased expression of sGC1-subunit mRNA by nerve growth factor (NGF) in PC12 cells. Inhibitors of the ERK and p38 MAPK pathways, PD-98059 and SB-203580, had no effect. SP-600125 also inhibited the NGF-mediated decrease in the expression of sGC1 protein as well as sGC activity in PC12 cells. Other experiments revealed that decreased sGC1 mRNA expression through a cAMP-mediated pathway, using forskolin, was not blocked by SP-600125. We also demonstrate that TNF-/IL-1 stimulation of rat fetal lung (RFL-6) fibroblast cells resulted in sGC1 mRNA inhibition, which was blocked by SP-600125. Expression of a constitutively active JNKK2-JNK1 fusion protein in RFL-6 cells caused endogenous sGC1 mRNA levels to decrease, while a constitutively active ERK2 protein had no effect. Collectively, these data demonstrate that SP-600125 may influence the intracellular levels of the sGC1-subunit in certain cell types and may implicate a role for c-Jun kinase in the regulation of sGC1 expression.  相似文献   

9.
Using monolayers of intestinal cells, we reported that upregulation of inducible nitric oxide synthase (iNOS) is required for oxidative injury and that activation of NF-B is key to cytoskeletal instability. In the present study, we hypothesized that NF-B activation is crucial to oxidant-induced iNOS upregulation and its injurious consequences: cytoskeletal oxidation and nitration and monolayer dysfunction. Wild-type (WT) cells were pretreated with inhibitors of NF-B, with or without exposure to oxidant (H2O2). Other cells were transfected with an IB mutant (an inhibitor of NF-B). Relative to WT cells exposed to vehicle, oxidant exposure caused increases in IB instability, NF-B subunit activation, iNOS-related activity (NO, oxidative stress, tubulin nitration), microtubule disassembly and instability (increased monomeric and decreased polymeric tubulin), and monolayer disruption. Monolayers pretreated with NF-B inhibitors (MG-132, lactacystin) were protected against oxidation, showing decreases in all measures of the NF-B iNOS NO pathway. Dominant mutant stabilization of IB to inactivate NF-B suppressed all measures of the iNOS/NO upregulation while protecting monolayers against oxidant insult. In these mutants, we found prevention of tubulin nitration and oxidation and enhancement of cytoskeletal and monolayer stability. We concluded that 1) NF-B is required for oxidant-induced iNOS upregulation and for the consequent nitration and oxidation of cytoskeleton; 2) NF-B activation causes cytoskeletal injury following upregulation of NO-driven processes; and 3) the molecular event underlying the destabilizing effects of NF-B appears to be increases in carbonylation and nitrotyrosination of the subunit components of cytoskeleton. The ability to promote NO overproduction and cytoskeletal nitration/oxidation is a novel mechanism not previously attributed to NF-B in cells. tubulin cytoskeleton; microtubules; oxidation/nitration; inducible nitric oxide synthase/peroxynitrite; inflammatory bowel disease; Caco-2 cells; gut barrier; nuclear factor-B/IB  相似文献   

10.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

11.
We investigated the involvement of PKC- in apical actin remodeling in carbachol-stimulated exocytosis in reconstituted rabbit lacrimal acinar cells. Lacrimal acinar PKC- cosedimented with actin filaments in an actin filament binding assay. Stimulation of acini with carbachol (100 µM, 2–15 min) significantly (P 0.05) increased PKC- recovery with actin filaments in two distinct biochemical assays, and confocal fluorescence microscopy showed a significant increase in PKC- association with apical actin in stimulated acini as evidenced by quantitative colocalization analysis. Overexpression of dominant-negative (DN) PKC- in lacrimal acini with replication-defective adenovirus (Ad) resulted in profound alterations in apical and basolateral actin filaments while significantly inhibiting carbachol-stimulated secretion of bulk protein and -hexosaminidase. The chemical inhibitor GF-109203X (10 µM, 3 h), which inhibits PKC-, -, -, and -, also elicited more potent inhibition of carbachol-stimulated secretion relative to Gö-6976 (10 µM, 3 h), which inhibits only PKC- and -. Transduction of lacrimal acini with Ad encoding syncollin-green fluorescent protein (GFP) resulted in labeling of secretory vesicles that were discharged in response to carbachol stimulation, whereas cotransduction of acini with Ad-DN-PKC- significantly inhibited carbachol-stimulated release of syncollin-GFP. Carbachol also increased the recovery of secretory component in culture medium, whereas Ad-DN-PKC- transduction suppressed its carbachol-stimulated release. We propose that DN-PKC- alters lacrimal acinar apical actin remodeling, leading to inhibition of stimulated exocytosis and transcytosis. lacrimal gland; acinar epithelial cell; exocytosis; polymeric immunoglobulin A receptor  相似文献   

12.
Stimulation of -adrenergic receptors (-AR) induces apoptosis in adult rat ventricular myocytes (ARVMs) via the JNK-dependent activation of mitochondrial death pathway. Recently, we have shown that inhibition of matrix metalloproteinase-2 (MMP-2) inhibits -AR-stimulated apoptosis and that the apoptotic effects of MMP-2 are possibly mediated via its interaction with 1 integrins. Herein we tested the hypothesis that MMP-2 impairs 1 integrin-mediated survival signals, such as activation of focal adhesion kinase (FAK), and activates the JNK-dependent mitochondrial death pathway. Inhibition of MMP-2 using SB3CT, a selective gelatinase inhibitor, significantly increased FAK phosphorylation (Tyr-397 and Tyr-576). TIMP-2, tissue inhibitor of MMP-2, produced a similar increase in FAK phosphorylation, whereas treatment of ARVMs with purified active MMP-2 significantly inhibited FAK phosphorylation. Inhibition of MMP-2 using SB3CT inhibited -AR-stimulated activation of JNKs and levels of cytosolic cytochrome c. Treatment of ARVMs with purified MMP-2 increased cytosolic cytochrome c release. Furthermore, inhibition of MMP-2 using SB3CT and TIMP-2 attenuated -AR-stimulated decreases in mitochondrial membrane potential. Overexpression of 1 integrins using adenoviruses expressing the human 1A-integrin decreased -AR-stimulated cytochrome c release and apoptosis. Overexpression of 1 integrins also inhibited apoptosis induced by purified active MMP-2. These data suggest that MMP-2 interferes with the 1 integrin survival signals and activates JNK-dependent mitochondrial death pathway leading to apoptosis. matrix metalloproteinases; focal adhesion kinase; c-Jun NH2-terminal kinase; cytochrome c  相似文献   

13.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

14.
Direct association of RhoA with specific domains of PKC-alpha   总被引:1,自引:0,他引:1  
Previous studies performed at our laboratory have shown that agonist-induced contraction of smooth muscle is associated with translocation of protein kinase C (PKC)- and RhoA to the membrane and that this interaction is due to a direct protein-protein interaction. To determine the domains of PKC- involved in direct interaction with RhoA, His-tagged PKC- proteins of individual domains and different combinations of PKC- domains were used to perform in vitro binding assays with the fusion protein glutathione-S-transferase (GST)-RhoA. Coimmunoprecipitation was also performed using smooth muscle cells transfected with truncated forms of PKC- in this study. The data indicate that RhoA directly bound to full-length PKC-, both in vitro (82.57 ± 15.26% above control) and in transfected cells. RhoA bound in vitro to the C1 domain of PKC- [PKC- (C1)] (70.48 ± 20.78% above control), PKC- (C2) (72.26 ± 29.96% above control), and PKC- (C4) (90.58 ± 26.79% above control), but not to PKC- (C3) (0.64 ± 5.18% above control). RhoA bound in vitro and in transfected cells to truncated forms of PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) (94.09 ± 12.13% and 85.10 ± 16.16% above control, respectively), but not to PKC- (C1, C2, and C3) or to PKC- (C2 and C3) (0.47 ± 1.26% and 7.45 ± 10.76% above control, respectively). RhoA bound to PKC- (C1 and C2) (60.78 ± 13.78% above control) only in vitro, but not in transfected cells, and PKC- (C2, C3, and C4) and PKC- (C3 and C4) bound well to RhoA. These data suggest that RhoA bound to fragments that may mimic the active form of PKC-. The studies using cells transfected with truncated forms of PKC- indicate that PKC- (C1 and C2), PKC- (C1, C2, and C3), and PKC- (C2 and C3) did not associate with RhoA. Only full-length PKC-, PKC- (C2, C3, and C4), and PKC- (C3 and C4) associated with RhoA. The association increased upon stimulation with acetylcholine. These results suggest that the functional association of PKC- with RhoA may require the C4 domain. domains; histidine; fusion proteins  相似文献   

15.
Using intestinal Caco-2 cells, we previously showed that assembly of cytoskeleton is required for monolayer barrier function, but the underlying mechanisms remain poorly understood. Because the -isoform of PKC is present in wild-type (WT) intestinal cells, we hypothesized that PKC- is crucial for changes in cytoskeletal and barrier dynamics. We have created the first multiple sets of gastrointestinal cell clones transfected with varying levels of cDNA to stably inhibit native PKC- (antisense, AS; dominant negative, DN) or to express its activity (sense). We studied transfected and WT Caco-2 cells. First, relative to WT cells, AS clones underexpressing PKC- showed monolayer injury as indicated by decreased native PKC- activity, reduced tubulin phosphorylation, increased tubulin disassembly (decreased polymerized and increased monomeric pools), reduced architectural integrity of microtubules, reduced stability of occludin, and increased barrier hyperpermeability. In these AS clones, PKC- was substantially reduced in the particulate fractions, indicating its inactivation. In WT cells, 82-kDa PKC- was constitutively active and coassociated with 50-kDa tubulin, forming an endogenous PKC-/tubulin complex. Second, DN transfection to inhibit the endogenous PKC- led to similar destabilizing effects on monolayers, including cytoskeletal hypophosphorylation, depolymerization, and instability as well as barrier disruption. Third, stable overexpression of PKC- led to a mostly cytosolic distribution of -isoform (<10% in particulate fractions), indicating its inactivation. In these sense clones, we also found disruption of occludin and microtubule assembly and increased barrier dysfunction. In conclusion, 1) PKC- isoform is required for changes in the cytoskeletal assembly and barrier permeability in intestinal monolayers, and 2) the molecular event underlying this novel biological effect of PKC- involves changes in phosphorylation and/or assembly of the subunit components of the cytoskeleton. The ability to alter the cytoskeletal and barrier dynamics is a unique function not previously attributed to PKC-. microtubules; tubulin; occludin; epithelial barrier permeability; protein kinase C isoform  相似文献   

16.
This study investigated if an osteoclastic protein-tyrosine phosphatase (PTP), PTP-oc, plays a role in the functional activity and differentiation of osteoclastic cells by determining the effects of overexpression of wild-type (WT)- or phosphatase-deficient (PD)-PTP-oc on bone resorption activity and differentiation of human promyelomonocytic U-937 cells, which could be induced to differentiate into "osteoclast-like" cells by phorbol ester/1,25(OH)2D3 treatment. U-937 cells overexpressing WT- or PD-PTP-oc were produced with a transposon-based vector. The size and depth of resorption pits created by WT-PTP-oc-overexpressing osteoclast-like cells were greater, while those by PD-PTP-oc-overexpressing osteoclast-like cells were less, than those created by control osteoclast-like cells. Overexpression of WT-PTP-oc also enhanced, while overexpression of PD-PTP-oc suppressed, their differentiation into osteoclast-like cells. Overexpression of WT-PTP-oc increased apoptosis and proliferation of U-937 cells, and overexpression of PD-PTP-oc reduced cell proliferation. Cells overexpressing WT-PTP-oc has also led to greater c-Src and NF- activation, whereas cells overexpressing PD-PTP-oc resulted in less c-Src and NF- activation. c-Src activation and NF- activation each correlated with resorption activity and differentiation into osteoclast-like cells. In summary, these results show that 1) PTP-oc regulates both the activity and the differentiation of osteoclast-like cells derived from U-937 cells; 2) PTP-oc enzymatic activity is important to these processes; 3) high PTP-oc enzymatic activity caused an increase in U-937 cell apoptosis and proliferation, leading to no significant changes in the number of viable cells; and 4) some of the PTP-oc actions are mediated in part by the c-Src and/or NF- pathways. osteoclast; resorption; nuclear factor-; c-Src  相似文献   

17.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   

18.
Focal adhesion kinase (FAK) integrates various extracellular and intracellular signals and is implicated in a variety of biological functions, but its exact role and downstream targeting signals in the regulation of apoptosis in intestinal epithelial cells (IECs) remains unclear. The current study tested the hypothesis that FAK has an antiapoptotic role in the IEC-6 cell line by altering NF-B signaling. Induced FAK expression by stable transfection with the wild-type (WT)-FAK gene increased FAK phosphorylation, which was associated with an increase in NF-B activity. These stable WT-FAK-transfected IECs also exhibited increased resistance to apoptosis when they were exposed to TNF- plus cycloheximide (TNF-/CHX). Specific inhibition of NF-B by the recombinant adenoviral vector containing the IB superrepressor prevented increased resistance to apoptosis in WT-FAK-transfected cells. In contrast, inactivation of FAK by ectopic expression of dominant-negative mutant of FAK (DNM-FAK) inhibited NF-B activity and increased the sensitivity to TNF-/CHX-induced apoptosis. Furthermore, induced expression of endogenous FAK by depletion of cellular polyamines increased NF-B activity and resulted in increased resistance to TNF-/CHX-induced apoptosis, both of which were prevented by overexpression of DNM-FAK. These results indicate that increased expression of FAK suppresses TNF-/CHX-induced apoptosis, at least partially, through the activation of NF-B signaling in IECs. polyamines; -difluoromethylornithine; X-linked inhibitor of apoptosis protein; IB  相似文献   

19.
Temporal and spatial differences in extracellular matrix play critical roles in cell proliferation, differentiation and migration. Different migratory stimuli use different substrates and receptors to achieve cell migration. To understand the mechanism of insulin-like growth factor binding protein-5 (IGFBP-5)-induced migration in mesangial cells, the roles of integrins and substrates were examined. IGFBP-5 induced an increase in mRNA expression for laminin (LN) chains lama4, lamb2, and lamc1, suggesting that LN-9 might be required for migration. Antibodies to the LN4 and LN2 chains, but not LN1, blocked IGFBP-5-induced migration. Anti-sense morpholino oligonucleotide inhibition of expression of LN4 substantially reduced expression of LN-8/9 (411/421, 411/421) and prevented IGFBP-5-induced migration. Anti-sense inhibition of lamb2 reduced expression of LN-9. Absence of LN-9 prevented IGFBP-5-induced migration, which was not preserved by continued expression of LN-8. The requirement for LN-9 was further supported by studies of T98G cells, which express predominantly LN-8. IGFBP-5 had little effect on migration in these cells, but increased migration when T98G cells were plated on LN-8/9. IGFBP-5-mediated mesangial cell migration was inhibited by antibodies that block attachment to 61-integrins but was unaffected by antibodies and disintegrins that block binding to other integrins. Furthermore, in cells with anti-sense inhibited expression of LN-9, integrin 61 was no longer detected on the cell surface. These studies suggest the specificity of mechanisms of migration induced by specific stimuli and for the first time demonstrate a unique function for LN-9 in mediating IGFBP-5-induced migration. migration; integrins; extracellular matrix  相似文献   

20.
Neuropeptides play an important role in the active communication between the nervous and immune systems. Substance P (SP) is a prominent neuropeptide involved in neurogenic inflammation and has been reported to exert various proinflammatory actions on inflammatory leukocytes including neutrophils. The present study further investigated the modulatory effect of SP (1 µM) on chemokine production and chemokine receptor expression in primary mouse neutrophils. Our results showed that SP primed neutrophils for chemotactic responses not only to the CXC chemokine macrophage inflammatory protein (MIP)-2/CXCL2 but also to the CC chemokine MIP-1/CCL3. The activating effect of SP on neutrophils was further evidenced by upregulation of the CD11b integrin, the activation marker of neutrophils. SP induced both the mRNA and protein expression of the chemokines MIP-1/CCL3 and MIP-2/CXCL2 in neutrophils and upregulated the chemokine receptors CC chemokine receptor (CCR)-1 and CXC chemokine receptor (CXCR)-2. This stimulatory effect on chemokine and chemokine receptor expression in neutrophils was further found to be neurokinin-1 receptor (NK-1R) specific. Pretreatment with selective NK-1R antagonists inhibited SP-triggered activation of neutrophils and chemokine and chemokine receptor upregulation. Moreover, SP-induced chemokine upregulation was NF-B dependent. SP time dependently induced NF-B p65 binding activity, IB degradation, and NF-B p65 nuclear translocation in neutrophils. Inhibition of NF-B activation with its inhibitor Bay11-7082 (10 µM) abolished SP-induced NF-B binding activity and upregulation of MIP-1/CCL3 and MIP-2/CXCL2 in neutrophils. Together, these results suggest that SP exerts a direct stimulatory effect on the expression of chemokines and chemokine receptors in mouse neutrophils. The effect is NK-1R mediated, involving NF-B activation. chemokines and receptors; neuro-immune interaction; neurokinin-1 receptor; primary leukocytes; NF-B activation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号