首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Amino acids are considered to be regulators of metabolism in several species, and increasing importance has been accorded to the role of amino acids as signalling molecules regulating protein synthesis through the activation of the TOR transduction pathway. Using rainbow trout hepatocytes, we examined the ability of amino acids to regulate hepatic metabolism-related gene expression either alone or together with insulin, and the possible involvement of TOR. We demonstrated that amino acids alone regulate expression of several genes, including glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, pyruvate kinase, 6-phospho-fructo-1-kinase and serine dehydratase, through an unknown molecular pathway that is independent of TOR activation. When insulin and amino acids were added together, a different pattern of regulation was observed that depended upon activation of the TOR pathway. This pattern included a dramatic up-regulation of lipogenic (fatty acid synthase, ATP-citrate lyase and sterol responsive element binding protein 1) and glycolytic (glucokinase, 6-phospho-fructo-1-kinase and pyruvate kinase) genes in a TOR-dependent manner. Regarding gluconeogenesis genes, only glucose-6-phosphatase was inhibited in a TOR-dependent manner by combination of insulin and amino acids and not by amino acids alone. This study is the first to demonstrate an important role of amino acids in combination with insulin in the molecular regulation of hepatic metabolism.  相似文献   

12.
13.
The glucose-6-phosphatase system of the glucose sensitive insulin secreting rat insulinoma cells (INS-1) was investigated. INS-1 cells contain easily detectable levels of glucose-6-phosphatase enzyme protein (assessed by Western blotting) and have a very significant enzymatic activity. The features of the enzyme (Km and Vmax values, sensitivity to acidic pH, partial latency, and double immunoreactive band) are similar to those of the hepatic form. On the other hand, hardly detectable levels of glucose-6-phosphatase activity and protein were present in the parent glucose insensitive RINm5F cell line. The mRNA of the glucose-6-phosphate transporter was also more abundant in the INS-1 cells. The results support the view that the glucose-6-phosphatase system of the beta-cell is associated with the regulation of insulin secretion.  相似文献   

14.
The ability of insulin to suppress gluconeogenesis in type II diabetes mellitus is impaired; however, the cellular mechanisms for this insulin resistance remain poorly understood. To address this question, we generated transgenic (TG) mice overexpressing the phosphoenolpyruvate carboxykinase (PEPCK) gene under control of its own promoter. TG mice had increased basal hepatic glucose production (HGP), but normal levels of plasma free fatty acids (FFAs) and whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp compared with wild-type controls. The steady-state levels of PEPCK and glucose-6-phosphatase mRNAs were elevated in livers of TG mice and were resistant to down-regulation by insulin. Conversely, GLUT2 and glucokinase mRNA levels were appropriately regulated by insulin, suggesting that insulin resistance is selective to gluconeogenic gene expression. Insulin-stimulated phosphorylation of the insulin receptor, insulin receptor substrate (IRS)-1, and associated phosphatidylinositol 3-kinase were normal in TG mice, whereas IRS-2 protein and phosphorylation were down-regulated compared with control mice. These results establish that a modest (2-fold) increase in PEPCK gene expression in vivo is sufficient to increase HGP without affecting FFA concentrations. Furthermore, these results demonstrate that PEPCK overexpression results in a metabolic pattern that increases glucose-6-phosphatase mRNA and results in a selective decrease in IRS-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression. However, acute suppression of HGP and glycolytic gene expression remained intact, suggesting that FFA and/or IRS-1 signaling, in addition to reduced IRS-2, plays an important role in downstream insulin signal transduction pathways involved in control of gluconeogenesis and progression to type II diabetes mellitus.  相似文献   

15.
16.
17.
To investigate the sites of the free fatty acid (FFA) effects to increase basal hepatic glucose production and to impair hepatic insulin action, we performed 2-h and 7-h Intralipid + heparin (IH) and saline infusions in the basal fasting state and during hyperinsulinemic clamps in overnight-fasted rats. We measured endogenous glucose production (EGP), total glucose output (TGO, the flux through glucose-6-phosphatase), glucose cycling (GC, index of flux through glucokinase = TGO - EGP), hepatic glucose 6-phosphate (G-6-P) content, and hepatic glucose-6-phosphatase and glucokinase activities. Plasma FFA levels were elevated about threefold by IH. In the basal state, IH increased TGO, in vivo glucose-6-phosphatase activity (TGO/G-6-P), and EGP (P < 0.001). During the clamp compared with the basal experiments, 2-h insulin infusion increased GC and in vivo glucokinase activity (GC/TGO; P < 0.05) and suppressed EGP (P < 0.05) but failed to significantly affect TGO and in vivo glucose-6-phosphatase activity. IH decreased the ability of insulin to increase GC and in vivo glucokinase activity (P < 0.01), and at 7 h, it also decreased the ability of insulin to suppress EGP (P < 0.001). G-6-P content was comparable in all groups. In vivo glucose-6-phosphatase and glucokinase activities did not correspond to their in vitro activities as determined in liver tissue, suggesting that stable changes in enzyme activity were not responsible for the FFA effects. The data suggest that, in overnight-fasted rats, FFA increased basal EGP and induced hepatic insulin resistance at different sites. 1) FFA increased basal EGP through an increase in TGO and in vivo glucose-6-phosphatase activity, presumably due to a stimulatory allosteric effect of fatty acyl-CoA on glucose-6-phosphatase. 2) FFA induced hepatic insulin resistance (decreased the ability of insulin to suppress EGP) through an impairment of insulin's ability to increase GC and in vivo glucokinase activity, presumably due to an inhibitory allosteric effect of fatty acyl-CoA on glucokinase and/or an impairment in glucokinase translocation.  相似文献   

18.
19.
The ten-fold increase in glucose-6-phosphatase, previously reported, in 2S FAZA hepatoma cells exposed to dexamethasone, is completely blocked by low concentrations of insulin. At 3 x 10(-10) M insulin, the activity induced by 10(-6) M dexamethasone is reduced by half. The activity of intact microsomes, which reflects translocation of cytoplasmic glucose 6-phosphate into the endoplasmic reticulum, is induced by dexamethasone, but to a lesser extent than the hydrolase. Insulin also prevents this induction.  相似文献   

20.
Patel S  Lipina C  Sutherland C 《FEBS letters》2003,549(1-3):72-76
Insulin rapidly and completely inhibits expression of the hepatic insulin-like growth factor binding protein-1 (IGFBP-1), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes. This inhibition is mediated through a phosphatidyl inositol 3-kinase-dependent regulation of a DNA element, termed the thymine-rich insulin response element, found within the promoters of each of these genes. This has led to the conclusion that these three promoters are regulated by insulin using the same molecular mechanism. However, we recently found that the regulation of the IGFBP1 but not the PEPCK or G6Pase genes by insulin was sensitive to rapamycin, an inhibitor of mTOR. Here, we present further evidence that different regulatory pathways mediate the insulin regulation of these promoters. Importantly, we identify a protein phosphatase activity in the pathway connecting mTOR to the IGFBP-1 promoter. These data have major implications for the development of molecular therapeutics for the treatment of insulin-resistant states such as diabetes and hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号