首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and arrangement of appendages (scalids) on the head of the homalorhagid kinorhynch Kinorhynchus phyllotropis Brown & Higgins, 1983 are named, described and illustrated. In adults of this species, seven rings of external scalids are separated by segment boundary structures from the oral styles and three rings of internal scalids. All of these appendages contain ciliated receptor cells which pass to pores at the scalid tips, and all but the two anterior rings are jointed. All of these appendages are radially arranged in multiples of five, and closely associated with the ten lobed circumoral nerve ring. The most posterior scalid ring consists of fourteen trichoscalids, of which six are longer than the other eight. The six longer trichoscalids are arranged in bilateral symmetry, two to each of the three facets of the body. Similarities between scalid arrangement in Kinorhyncha and Loricifera are discussed.  相似文献   

2.
Postembryonic development in the kinorhynch species Antygomonas incomitata was examined using scanning electron microscopy. The morphology of the six juvenile stages, J‐1 to J‐6, varies at numerous details, but they can also be distinguished by a few key characters. Juvenile stage 1 by its composition of only nine trunk segments; J‐2 by the combination of possessing 10 trunk segments, but no cuspidate spines on segment 9; J‐3 by the presence of cuspidate spines on segment 9, but only one pair of cuspidate spines on segment 8; J‐4 by the combination of 10 trunk segments only, but having two pairs of cuspidate spines on segment 8; J‐5 by possessing 11 trunk segments and same spine compositions as adults but is still maintaining postmarginal spiculae; J‐6 specimens closely resemble adults and are most easily identified by their reduced trunk lengths. New segments are formed in a growth zone in the anterior part of the terminal segment. The complete number of segments is reached in J‐5. Development of cuticular head and trunk structures are described through all postembryonic stages and following developmental patterns could be outlined: the mouth cone possesses outer oral styles from J‐1, but in J‐1 to J‐3, the styles alternate in size. Scalids of the introvert are added after each molt, and scalids appear earliest in the anterior rings, whereas scalids in more posterior rings are added in older postembryonic stages. The early J‐1 stage is poor in spines and sensory spots and both structures increase in number after each molt. The complete spine composition is reached in J‐4, whereas new sensory spots appear after all molts, inclusive the final one from J‐6 to adult. Sensory spots in the paraventral positions often appear as Type 3 sensory spots but are through development transformed to Type 2. This transformation happens earliest on the anterior segments. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Summary Based on new SEM and TEM observations, the arrangement and ultrastructure of the scalids and adhesive tubuli of the larvae of Halicryptus spinulosus are described. The scalids are arranged in 25 longitudinal rows. Transversally they form seven circlets which alternate. The first circlet consists of 8 and the second of 9 scalids. All following circlets consist of three subrings with 8+8+9 scalids each. New scalids develop in a sub frontal growing zone posterior to the second circlet. The ultrastructure of all different receptor cells and sense organs of the scalids is described. Whereas the receptor cell type 1 occurs in nearly all scalids, the verticalrootlet receptor is restricted to the first circlet, the basal receptor to the second and the coiled-cilium receptor to the third and fourth circlet. Based on these new data, the scalid arrangement and the equipment with different receptor cells can be postulated for the ground pattern of the priapulid larvae. Also the larval development, moulting and the structure of the cuticle are discussed in comparison with the Kinorhyncha and Loricifera.  相似文献   

4.
Abstract. The nervous system of the meiobenthic priapulid species Tubiluchus troglodytes is described by immunohistochemistry and confocal laser scanning microscopy. The brain is circumpharyngeal, consisting of a central ring of neuropil and both anterior and posterior somata. From the brain emerges a ventral nerve cord, which shows ganglion-like swellings in the neck and caudal region. The introvert includes longitudinal neurite bundles running below and between the rows of scalids, with a small cluster of sensory cells under each scalid. In the body wall of the neck and trunk region, longitudinal and circular neurite bundles are present in an orthogonal pattern. The tail is innervated from the caudal swelling of the ventral nerve cord; it also includes longitudinal and circular bundles in an orthogonal pattern. The pharynx has a reticulated system of neurite bundles running between the pharyngeal teeth and fimbrillae. Below each tooth and fimbrilus is a ganglion-like cluster of somata. The intestine is surrounded by a nerve net. The data on the nervous system are compared within other priapulids and with other species of Scalidophora (Kinorhyncha and Loricifera).  相似文献   

5.
Larvae ofTubiluchus corallicola van der Land 1968 were investigated by scanning and transmission electron microscopy. The scalids are sensory organs, each has a bipolar receptor cell with a single apical cilium similar to the scalid in the adult. Muscle cells of the larva are more differentiated than previously reported for other Priapulida; the larval arrangement of circular and longitudinal musculature differs from that of the adult, and a diaphragm is reported for the first time in Priapulida. The diaphragm may function in hydrostatic control of eversion and inversion of the introvert and mouth cone. The functional morphology of these two structures is discussed and contrasted with the Kinorhyncha.  相似文献   

6.
Ultrastructure, biology, and phylogenetic relationships of kinorhyncha   总被引:4,自引:1,他引:3  
The article summarizes current knowledge mainly about the (functional)morphology and ultrastructure, but also about the biology, development,and evolution of the Kinorhyncha. The Kinorhyncha are microscopic,bilaterally symmetrical, exclusively free-living, benthic, marineanimals and ecologically part of the meiofauna. They occur throughoutthe world from the intertidal to the deep sea, generally insediments but sometimes associated with plants or other animals.From adult stages 141 species are known, but 38 species havebeen described from juvenile stages. The trunk is arranged into11 segments as evidenced by cuticular plates, sensory spots,setae or spines, nervous system, musculature, and subcuticularglands. The ultrastructure of several organ systems and thepostembryonic development are known for very few species. Almostno data are available about the embryology and only a singlegene has been sequenced for a single species. The phylogeneticrelationships within Kinorhyncha are unresolved. Priapulida,Loricifera, and Kinorhyncha are grouped together as Scalidophora,but arguments are found for every possible sistergroup relationshipwithin this taxon. The recently published Ecdysozoa hypothesissuggests a closer relationship of the Scalidophora, Nematoda,Nematomorpha, Tardigrada, Onychophora, and Arthropoda.  相似文献   

7.
8.
Summary The introvert, mouth cone, and nervous system of Echinoderes capitatus were examined by transmission and scanning electron microscopy. The introvert bears seven rings of primarily quincunxial sensory scalids, including type 1 and 2 spinoscalids as well as trichoscalids; the latter two types are additionally provided with glandular cells. The mouth cone bears one ring of decamerous sensory oral styles and three rings of quincunxial sensory pharyngeal styles. The intra- to basiepithelial, bilateral nervous system consists of a circumentric nerve ring in the introvert, a terminal and proximal nerve ring in the mouth cone, a ventral chain of ganglia, one in each trunk zonite, and a caudal ganglion. The introvert, the neck, and the trunk zonites are innervated from the forebrain; the mouth cone and the pharyngeal bulb are innervated from the hindbrain. The monophyly of the Kinorhyncha is based upon the following autapomorphic characters: (1) a mouth cone, (2) a neck with 16 placids, (3) a trunk with 11 zonites, (4) scalids of three types: type 1 and type 2 spinoscalids, and trichoscalids, (5) an anteriormost ring of ten type 1 spinoscalids (sensory organs divided into a basal and a terminal part), (6) a posteriormost ring of 14 trichoscalids (glandular sensory organs which are undivided), (7) rings in between the anteriormost and posteriormost are type 2 spinoscalids (glandular sensory organs divided into a basal and a terminal part), (8) a mouth cone with a terminal and a proximal nerve ring, (9) nine sensory oral styles with decamerous symmetry (the dorsal style is missing) and (10) three rings of sensory pharyngeal styles with, from anterior to posterior, ten, five, and five styles with quincunxial arrangement. The following characters are assumed to be autapomorphic for the taxon Nematoda+Gastrotricha+Kinorhyncha+Loricifera+Priapulida: (1) a basiepithelial circumentric brain and (2) a neuropileous nerve ring in a subterminal position. The following characters are assumed to be autapomorphic for the taxon Kinorhyncha+Loricifera+Priapulida: (1) a neuropileous nerve ring in a terminal position, (2) an introvert with scalids, (3) an eversible foregut and (4) tanycytes.The unpublished doctoral thesis of B. Neuhaus [1991 Zur Ultrastruktur, Postembryonalentwicklung und phylogenetischen Verwandtschaft der Kinorhyncha. PhD thesis. University of Götingen, Germany] was finished simultaneously with the completion of this study.  相似文献   

9.
We investigated the development of dorsoventral and longitudinalmusculature in all postembryonic stages of the kinorhynch Pycnophyeskielensis. Although the earliest stages have only 8 externallyseparated trunk segments, they already possess dorsoventralmuscles for 10 (prospective) trunk segments. The last, 11th,pair is added in the third juvenile stage. Longitudinal musculature,in contrast, is slower to develop and reaches its full lengthonly in the adult. In several juvenile individuals, single fibersproject from the longitudinal musculature into the followingsegments. In all juvenile stages, longitudinal muscles are continuousbetween segments, whereas in adults they are segmentally separatedfrom each other. Such late occurrence of a segmental patternin the longitudinal musculature is in contrast to patterns ofmuscle development in arthropods and annelids.  相似文献   

10.
Abstract Scanning electron microscopical studies revealed four distinct morphological larva-types (not instars) of Priapulus caudatus whose lorica-length measured 82–860 μm. The smallest of the larvae are round to oval, have 20 longitudinal ridges, a series of transverse ridges, and have two pairs of laterally situated tubuli near the posterior limits. The second larva-type is dorsoventrally compressed, has a single dorsal and single unsculptured ventral plate each with a prominent midridge near the anterior limits, three infolded lateral plates with a pair of tubuli near the posterior limits. The third and fourth larva-types remain dorsoventrally flattened; the third larva-type has less pronounced sculpturing than the fourth larva-type and is smaller; two pairs of tubuli are situated as in the previous stage. The number and arrangement of scalids on the introvert and pharyngeal teeth differ according to each of the four larva-types and are described. The ultrastructure of all organ systems is described. All scalids are sensilla equipped with ciliated receptor cells. The cuticle is similar to the cuticle in the adult and differs fundamentally from the cuticle of larval Halicryptus. The trunk is richly supplied with sensory structures. Trunk tubuli contain secretory cells. Posteriorly, a gland complex was found which presumably is the precursor of the equivalent gland in postlarvae and adults. The implications of the first larva-type's structural similarity to the larva of Tubiluchus are discussed.  相似文献   

11.
The classification of Kinorhyncha is mainly based upon cuticular differentiations including closing apparatus, trunk cuticle, and various appendages. This paper investigates whether ultrastructural characters support taxonomic results based upon light microscopical characters. The trunk region of Eckinoderes cupitatus bears several epidermal glands and setae and one middorsal spine on the 6th zonite. These characters are constant in number and distribution. The epidermal glands are unicellular, merocrine, glandular cells with an opening built up by several ramified canals terminating in pores within a slightly elevated ring-like bulge. Setae are composed of two cells, one merocrine glandular cell and one sensory cell with microvilli surrounding the outlet differentiation of the glandular cell. The setae have a pore on its tip, where the secretory product is released. The middorsal spine bears a multiciliar sensory cell. No pore is developed on the tip of the spine.  相似文献   

12.
A new genus and species of Kinorhyncha from the Bay of Vestar (northern Adriatic Sea) is described. The single male specimen was collected from suhtidal medium-grained sand. Autapo-morphies of Antygomonas incomitata gen. ct sp.n. are the occurrence of 32 interstitial placids, three lateral spines on the 10th zonitc, the subdorsal sculpture on the 12th zonitc, two mid-dorsal spines on the 13th zonitc, and a special cuticular formation of the trunk zonites 4-13 which show a mid-ventral articulation zone but no lateral ones. The relationships of Antygomonas incomitata within the Cyclorhagida are discussed. The term zonite (instead of segment), introduced by Zelinka (1928) for the repetitive arrangement of the cuticle, epidermis, nervous system, sense organs, and muscles in Kinorhyncha is discussed.  相似文献   

13.
Abstract. Here we describe the hatching and morphology of the earliest larval stages of the priapulid worm Priapulus caudatus for the first time. The hatching larva differs considerably from previously described larvae not only in its general body shape but also in its lack of a proper lorica including the typical lorica tubuli. Furthermore, no mouth opening or pharyngeal teeth have formed as yet, and the number and arrangement of scalids differ from that of later larvae. The hatching larva molts and emerges as the first lorica larva. This larva partially resembles earlier described lorica larvae, but there are a number of important differences; the first lorica larva is smaller, and the mouth opening as well as pharyngeal teeth are still yet to form. The second lorica larva is equipped with four rings of pharyngeal teeth; it shows striking similarity to the previously described larva of P. caudatus , i.e., the larva-type 2 , only differing in the scalid pattern. We conclude that the first two larval stages of P. caudatus have not been described previously. We suggest that discrepancies between the earliest lorica larvae described here and in earlier publications might depend on sub-speciation or ecophenotypic modification of larvae collected from different localities. Our findings highlight the importance of studying the development of non-model organisms such as priapulids under controlled laboratory conditions.  相似文献   

14.
Juvenile development of the Middle Cambrian agnostid trilobite Pentagnostus proanabarensis Fedoseev, 1999 is studied. A sequence of eight juvenile stages is defined based on changes in morphology and measurements. Three of them belong to meraspid degree 0, another three refer to meraspid degree 1, and two represent early holaspid stages. Neither the frequency distribution of the length of cephalons and pygidia nor the length-width scatter diagrams give clear clusters of molts; the number of juvenile molts can be estimated through the analysis of the posteroaxis length distribution. Thus, the measurements and morphology of some juvenile pygidia with vestiges of the pleural and postaxial furrows allow reconstruction of the number of segments during individual growth. At the initial stage of development, the pygidial axis of P. proanabarensis probably had four segments, the pygidial axis increased up to no less than six segments in adults.  相似文献   

15.
姜碌  花保祯 《昆虫学报》2016,(9):1004-1012
【目的】蝎蛉科(Panorpidae)是长翅目(Mecoptera)最大的科,是重要的生态指示昆虫。然而,由于对环境条件要求苛刻,饲养困难,其幼期研究很不充分。【方法】本研究通过人工饲养成虫获得了长蝎蛉Panorpa macrostyla Hua的卵、幼虫和蛹等全部虫态,运用光学显微镜和扫描电子显微技术观察了其超微形态,并简要记载了其生物学特性。【结果】长蝎蛉每年发生1代,成虫发生于6月末至8月初。卵椭球形,卵壳表面覆盖一层隆起的网状结构。幼虫蠋型,具3对分4节的胸足和8对不分节的腹足;头壳高度骨化,具1对由26个小眼组成的复眼和1对3节的触角,口器咀嚼式;腹部第1-9节背面具有成对的背毛突,第10节仅有1根背毛突,腹部末端具有一个可伸缩的吸盘;呼吸系统为周气门式,具1对前胸气门和8对腹气门。幼虫共4个龄期,以预蛹期在土室内越冬。蛹为强颚离蛹,外形接近成虫,雄蛹腹部末端膨大。【结论】基于幼虫形态特征,长蝎蛉明显区别于新蝎蛉属Neopanorpa、华蝎蛉属Sinopanorpa、双角蝎蛉属Dicerapanorpa以及单角蝎蛉属Cerapanorpa幼虫。然而,长蝎蛉幼虫头部刚毛L2和SO2,腹部末节刚毛D2,SD1和SD2端部均膨大呈棒状,与蝎蛉属Panorpa其他种类区别明显,表明长蝎蛉的属级地位需要进一步研究。  相似文献   

16.
The stomach of decapods is a complex organ with specialized structures that are delimited by a cuticle. The morphology and ontogeny of the stomach are largely described, but few studies have focused on the morphology of its cuticle. This study examined the morphology of the stomach cuticle of cardiac sacs, gastric mill ossicles, cardio-pyloric valve and pyloric filters, and during various stages (zoea I and II, megalopa, first juvenile, and adult) of the common spider crab Maja brachydactyla using dissection, histology and transmission electron microscopy. The results show that cuticle morphology varies among structures (e.g., cardiac sacs, urocardiac ossicle, cardio-pyloric valve, pyloric filters), within a single structure (e.g., different sides of the urocardiac ossicle) and among different life stages. The cuticle during the larval stages is very thin and the different layers (epicuticle, exocuticle, and endocuticle) are infrequently distinguishable by histology. Major changes during larval development regarding cuticle morphology are observed after the molt to megalopa, including the increment in thickness in the gastric mill ossicles and cardio-pyloric valve, and the disappearance of the long thickened setae of the cardio-pyloric valve. The cuticle of all the stomach structures in the adults is thicker than in larval and juvenile stages. The cuticle varies in thickness, differential staining affinity and morphology of the cuticle layers. The structure–function relationship of the cuticle morphology is discussed.  相似文献   

17.
18.
We investigated early larval development in the notostracan Triops cancriformis (Bosc, 1801–1802) raised from dried cysts under laboratory conditions. We document the five earliest stages using scanning electron microscopy. The stage I larva is a typical nauplius, lecithotropic and without trunk limbs. The stage II larva is feeding and has trunk limb precursors and a larger carapace. Stage III larvae have larger trunk limbs and a more adult shape. Stage IV larvae have well developed trunk limbs, and stage V larvae show atrophy of the antennae. We describe the ontogeny of selected features such as trunk limbs and carapace, discuss ontogeny and homologization of head appendages, follow the development of the feeding mechanism, and discuss trunk limb ontogeny.  相似文献   

19.
The cuticle of the free-living nematode Caenorhabditis elegans is a proteinaceous extracellular structure that is replaced at each of four postembryonic molts by the underlying hypodermis. The cuticles of the adult and three juvenile stages (L1, Dauer larva, L4) have been compared ultrastructurally and biochemically. Each cuticle has an annulated surface and comprises two main layers, an inner basal layer and an outer cortical layer. The adult cuticle has an additional clear layer which separates the basal and cortical layers and is traversed by regularly arranged columns of electron-dense material. The fine structure of the cortical layer is similar in cuticles from different stages while that of the basal layer is stage specific. Purified cuticles were obtained by sonication and treatment with sodium dodecyl sulfate (SDS) and their component proteins solubilized with a sulfhydryl reducing agent. The degree of cuticle solubility is stage specific and the insoluble structures for each cuticle were localized by electron microscopy. Analysis of 35S-labeled soluble cuticle proteins by SDS-polyacrylamide gel electrophoresis yields unique banding patterns for each stage. Most proteins are of high molecular weight (100–200 K) and are restricted to particular stages. Sixteen of the nineteen major proteins characterized are specifically degraded by bacterial collagenase. The results indicate that the different molts are not reiterative, but require the integration of both unique and shared gene functions. The potential use of stage-specific cuticle differences to identify and characterize regulatory genes controlling cuticle-type switching during development is discussed.  相似文献   

20.
Morphological and chemical studies on the cuticle during the molt cycle of the crab Scylla serrata were performed in order to understand the layer formation. Cuticle ultrastructure was studied by scanning electron microscopy (SEM). Energy-dispersive, X-ray diffraction, and X-ray fluorescence analysis were used for identification of the elements and phases in the inner surface of the cuticle. In the first stage (A) of cuticle formation, a thin pellicle organized as an irregular fragmented structure is built. It is composed mainly of alpha-chitin/protein beta-keratin-like complexes where heterogeneous mineral nucleation occur. It is impregnated by ferric concretions, responsible for the brown colour of the carapace. At the beginning of the mineralization process, a spheroidal inorganic phase appears consisting of dicalcium phosphate dihydrate (DCPD) Ca/P=1.00, octacalcium phosphate (OCP) Ca/P=1.33 associated with hydromagnesite and bromapatite traces. During further cuticle development in the remaining A stage and in the beginning of the B stage, calcite and magnesian calcite are formed from the precursor calcium phosphate phase. The next development in the C stages is characterized by intense calcareous thickening consisting mainly of calcite and of magnesian calcite, which become the major mineral fraction of the cuticle. Organic-inorganic complex precipitations exhibit different aspects as spongiform, filamentary helicoidal, and concentric radial arrangements during C1, C2, and C3, respectively. During different stages of the cuticle formation in Scylla serrata, these mineral deposits may partially result from the balance among different organic contents, mainly between alpha-chitin and protein beta-keratin-like compounds. On the other hand, the calcium crystallization on apatite and calcite polymorphic structures may be influenced by variations of physico-chemical factors in the cuticle compartment. J. Exp. Zool. 293:414-426, 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号