首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic mice expressing the human insulin gene do not produce insulin-specific antibody after injection of human insulin. Nevertheless, they have some peripheral T cells that proliferate to human insulin in vitro. To investigate the nature of these T cells, human insulin-specific T cell hybridomas were produced from transgenic and nontransgenic mice. Transgenic hybridomas required more insulin to achieve maximum responses and they produced lower levels of lymphokines than nontransgenic hybridomas. The majority of nontransgenic hybridomas recognized only human and pork insulin whereas transgenic hybridomas recognized beef, sheep, and/or horse insulin in addition to human and pork insulin. The TCR expressed by transgenic and nontransgenic hybridomas were determined by Northern analysis. Both types of hybridomas used several different V alpha and V beta gene families and no favored association between V alpha and V beta gene usage was detected in either type. V beta 1 was used by 7 of 16 nontransgenic hybridomas but only by 1 of 16 transgenic hybridomas. V beta 6 receptors were predominantly expressed by the transgenic hybridomas and all V beta 6-bearing hybridomas recognized beef as well as human insulin. The differences in Ag reactivity and TCR gene usage suggest that V beta 1-bearing human insulin-reactive T cells were clonally deleted or inactivated in the transgenic animal. Other clones, representing a minor subpopulation in nontransgenic mice, were recovered from transgenic mice.  相似文献   

2.
Simple epithelia express keratins 8 (K8) and 18 (K18) as their major intermediate filament (IF) proteins. One important physiologic function of K8/18 is to protect hepatocytes from drug-induced liver injury. Although the mechanism of this protection is unknown, marked K8/18 hyperphosphorylation occurs in association with a variety of cell stresses and during mitosis. This increase in keratin phosphorylation involves multiple sites including human K18 serine-(ser)52, which is a major K18 phosphorylation site. We studied the significance of keratin hyperphosphorylation and focused on K18 ser52 by generating transgenic mice that overexpress a human genomic K18 ser52→ ala mutant (S52A) and compared them with mice that overexpress, at similar levels, wild-type (WT) human K18. Abrogation of K18 ser52 phosphorylation did not affect filament organization after partial hepatectomy nor the ability of mouse livers to regenerate. However, exposure of S52A-expressing mice to the hepatotoxins, griseofulvin or microcystin, which are associated with K18 ser52 and other keratin phosphorylation changes, resulted in more dramatic hepatotoxicity as compared with WT K18-expressing mice. Our results demonstrate that K18 ser52 phosphorylation plays a physiologic role in protecting hepatocytes from stress-induced liver injury. Since hepatotoxins are associated with increased keratin phosphorylation at multiple sites, it is likely that unique sites aside from K18 ser52, and phosphorylation sites on other IF proteins, also participate in protection from cell stress.  相似文献   

3.
We have examined mechanisms of tolerance to circulating self-proteins in mice that are transgenic for human insulin. Normal, nontransgenic mice develop serum antibody responses when injected with human insulin in CFA; syngeneic transgenic mice do not. B cell responsiveness was assessed by immunizing with human insulin coupled to a T-independent Ag, Brucella abortus. No differences were found in the numbers of insulin-specific splenic plaque-forming cells between transgenic and nontransgenic mice suggesting that insulin-specific B cells are not tolerant in transgenic mice. Similarly, APC from transgenic and nontransgenic mice display no differences in their ability to process and present human insulin to human insulin-specific T cells in vitro. However, marked differences were detected between transgenic and nontransgenic T cells. Lymph node T cells from transgenic mice primed with human insulin provided no detectable helper activity for secondary antibody responses to human insulin whereas, lymph node T cells from nontransgenic mice did. Nevertheless, lymph node T cells from transgenic mice developed significant proliferative responses to human insulin. Lymph node T cells obtained from transgenic and nontransgenic mice were fused to BW5147 and human insulin-specific T cell hybridomas were generated. The fact that human insulin-specific T cell hybridomas were obtained from the transgenic mice suggests that these T cells were not clonally deleted. In addition, APC from transgenic mice did not stimulate human insulin-specific hybridomas from normal mice in the absence of exogenous insulin. We suggest that T cells specific for human insulin are not deleted in the thymus of transgenic mice because APC in the thymus do not bear the requisite levels of endogenous human insulin/Ia complexes. Therefore, we conclude that tolerance in the transgenic mice is preserved by peripheral mechanisms.  相似文献   

4.
N-Acetylglucosaminyltransferase (GnT)-III catalyzes the attachment of an N-acetylglucosamine (GlcNAc) residue to mannose in beta(1-4) configuration in the region of N-glycans and forms a bisecting GlcNAc. To investigate the pathophysiological role of dysregulated glycosylation mediated by aberrantly expressed GnT-III, we generated transgenic mice hyperexpressing the human GnT-III in the liver by introducing human GnT-III cDNA under the control of mouse albumin enhancer/promoter. Total five transgenic founder mice (pGnTSVTpA-10, -14, -20, -25, and -51) expressed the human GnT-III in their livers and were characterized by molecular genetic means. The copy number of transgene integrated into the genome of these mice ranged between 1 and 3 copies per haploid genome. Northern and Western blot analyses showed that the transgene is specifically expressed in the liver but not in any other tissues tested. The triglyceride level in GnT-III transgenic mice was significantly decreased, however, no significant differences in the levels of glucose, cholesterol, or albumin were observed between transgenic and nontransgenic mice. Although glutamate oxaloacetic transaminase and glutamic pyruvic transaminase activities of transgenic mice were also higher than those of nontransgenic mice, no differences in total bililubin and total protein were observed between the two animal lines. Large amounts of apolipoprotein (Apo) A-I and Apo B were specifically detected in the intracellular liver of transgenic mice. The accumulation of Apo A-I in hepatocytes may be due to aberrant glycosylation, since glycosylated Apo A-I was not observed in transgenic mice. However, the accumulated Apo B was severely glycosylated. Therefore, it is suggested that highly expressed transgenic GnT-III allowed unknown target proteins to be glycosylated in large amounts, and the resulting target protein(s) disrupted in assembly formation of Apo A-I in the hepatocytes and cause a decrease in the release of lipoproteins and accumulations of Apo A-I and Apo B in the liver. The transgenic mice showed aberrant glycosylation by GnT-III, resulting in numerous lipid droplets in liver tissues and the obesity. These mice showed microvesicular fatty changes with abnormal lipid accumulation in the hepatocytes. Our study provides the basis for future analysis of the role of glycosylation in hepatic pathogenesis. In the transgenic mice, Apo A-I and Apo B were significantly increased compared with levels in nontransgenic liver tissues.  相似文献   

5.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

6.
血管内皮生长因子(vascular endothelial growth factor, VEGF)是一种二聚体糖蛋白,能够诱导毛囊血管内皮细胞的增殖和迁移,调节毛囊周围毛细血管生成,进而影响毛囊的生长发育。已知cgVEGF164是绒山羊VEGF-A基因的一种主要剪接变体,但cgVEGF164基因是否具有调控毛囊生长发育的作用目前尚不清楚。为初步探究cgVEGF164基因对毛囊生长的影响及其机制,本研究通过原核显微注射制备cgVEGF164转基因过量表达小鼠。通过HE染色法比较转基因小鼠和非转基因对照小鼠毛囊的直径和密度,利用WesternBlot检测小鼠背部皮肤中信号蛋白ERK1/2、AKT1、LEF1的磷酸化水平。本研究成功获得5只阳性cg VEGF164转基因小鼠(雌雄比为4:1,阳性率8.5%);与非转基因对照小鼠相比,转基因小鼠毛囊直径增大、密度增加;经检测转基因小鼠中ERK1/2、AKT1、LEF1的磷酸化水平均上调。结果表明,cgVEGF164基因具有促进小鼠毛囊生长的作用,推测该功能可能与cgVEGF164影响ERK1/2、AKT1和LEF1等信号蛋白的磷酸化有关。  相似文献   

7.
8.
目的制备系统性表达人载脂蛋白C3(APOC3)基因的转基因小鼠,建立高血脂小鼠模型。方法将人APOC3基因插入系统性表达启动子下游,构建转基因表达载体,通过显微注射法建立人APOC3转基因C57BL/6J小鼠。并利用特异引物PCR法鉴定转基因小鼠的基因型,Western blot检测基因表达水平,血生化分析检测不同月龄转基因小鼠与同龄野生型小鼠的血脂指标,脂肪染色观察肝脏脂肪水平。结果建立了高表达人APOC3基因的转基因小鼠品系;转入的人APOC3基因在血液、肝脏、小肠、肌肉、心脏、肾脏、脾脏中均有明显表达;不同月龄转基因小鼠的血浆甘油三酯水平明显高于同龄野生型小鼠;转基因小鼠的肝脏脂肪含量高于野生型小鼠。结论系统性表达人APOC3基因的转基因小鼠表现高脂血症表型,可以作为高血脂以及高血脂相关的心血管病的工具动物。  相似文献   

9.
Oral administration of self-Ags can dampen or prevent autoimmune processes by induction of bystander suppression. Based on encouraging results from experiments in nonobese diabetic (NOD) mice, clinical trials have been initiated in type 1 diabetes using human insulin as an oral Ag. However, neither the precise antigenic requirements nor the mechanism of bystander suppression are currently understood in detail. Here we report that 1) a 1-aa difference in position 30 of the insulin B chain abrogated the ability of insulin to confer protection in both NOD as well as a virus-induced transgenic mouse model for type 1 diabetes. In the latter model transgenic mice express the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) under the control of the rat insulin promotor (RIP) in the pancreatic beta cells and develop diabetes only following LCMV infection; and 2) protection could be transferred with insulin B chain-restimulated but not LCMV-restimulated splenocytes from RIP-NP transgenic mice, demonstrating that the mechanism of diabetes prevention in the RIP-NP model is mediated by insulin B chain-specific, IL-4-producing regulatory cells acting as bystander suppressors.  相似文献   

10.
Genetic and environmental factors are decisive in the etiology of type 1 diabetes. Viruses have been proposed as a triggering environmental event and some evidences have been reported: type I IFNs exist in the pancreata of diabetic patients and transgenic mice expressing these cytokines in beta cells develop diabetes. To determine the role of IFNbeta in diabetes, we studied transgenic mice expressing human IFNbeta in the beta cells. Autoimmune features were found: MHC class I islet hyperexpression, T and B cells infiltrating the islets and transfer of the disease by lymphocytes. Moreover, the expression of beta(2)-microglobulin, preproinsulin, and glucagon in the thymus was not altered by IFNbeta, thus suggesting that the disease is caused by a local effect of IFNbeta, strong enough to break the peripheral tolerance to beta cells. This is the first report of the generation of NOD (a model of spontaneous autoimmune diabetes) and nonobese-resistant (its homologous resistant) transgenic mice expressing a type I IFN in the islets: transgenic NOD and nonobese-resistant mice developed accelerated autoimmune diabetes with a high incidence of the disease. These results indicate that the antiviral cytokine IFNbeta breaks peripheral tolerance to beta cells, influences the insulitis progression and contributes to autoimmunity in diabetes and nondiabetes- prone mice.  相似文献   

11.
Transgenic mice carrying the human heart muscle carnitine palmitoyltransferase I (M-CPTI) gene fused to a CAT reporter gene were generated to study the regulation of M-CPTI gene expression. When the mice were fasted for 48 h, CAT activity and mRNA levels increased by more than 2-fold in heart and skeletal muscle, but not liver or kidney. In the diabetic transgenic mice, there was a 2- to 3-fold increase in CAT activity and CAT mRNA levels in heart and skeletal muscle which upon insulin administration reverted to that observed with the control insulin sufficient transgenic mice. Feeding a high fat diet increased CAT activity and mRNA levels by 2- to 4-fold in heart and skeletal muscle of the transgenic mice compared to the control transgenic mice on regular diet. Overall, the M-CPTI promoter was found to be necessary for the tissue-specific hormonal and dietary regulation of the gene expression.  相似文献   

12.
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.  相似文献   

13.
Keratin 8/18, the predominant keratin pair of simple epithelia, is known to be aberrantly expressed in several squamous cell carcinomas (SCCs), where its expression is often correlated with increased invasion, neoplastic progression, and poor prognosis. The majority of keratin 8/18 structural and regulatory functions are governed by posttranslational modifications, particularly phosphorylation. Apart from filament reorganization, cellular processes including cell cycle, cell growth, cellular stress, and apoptosis are known to be orchestrated by K8 phosphorylation at specific residues in the head and tail domains. Even though deregulation of K8 phosphorylation at two significant sites (Serine73/Serine431) has been implicated in neoplastic progression of SCCs by various in vitro studies, including ours, it is reported to be highly context-dependent. Therefore, to delineate the precise role of Kereatin 8 phosphorylation in cancer initiation and progression, we have developed the tissue-specific transgenic mouse model expressing Keratin 8 wild type and phosphodead mutants under Keratin 14 promoter. Subjecting these mice to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-mediated skin carcinogenesis revealed that Keratin 8 phosphorylation may lead to an early onset of tumors compared to Keratin 8 wild-type expressing mice. Conclusively, the transgenic mouse model developed in the present study ascertained a positive impact of Keratin 8 phosphorylation on the neoplastic transformation of skin-squamous cells.  相似文献   

14.

Aims/hypothesis

The actions of peripherally administered nesfatin-1 on glucose homeostasis remain controversial. The aim of this study was to characterize the mechanisms by which peripheral nesfatin-1 regulates glucose metabolism.

Methods

The effects of nesfatin-1 on glucose metabolism were examined in mice by continuous infusion of the peptide via osmotic pumps. Changes in AKT phosphorylation and Glut4 were investigated by Western blotting and immnuofluorescent staining. Primary myocytes, adipocytes and hepatocytes were isolated from male mice.

Results

Continuous peripheral infusion of nesfatin-1 altered glucose tolerance and insulin sensitivity in mice fed either normal or high fat diet, while central administration of nesfatin-1 demonstrated no effect. Nesfatin-1 increases insulin secretion in vivo, and in vitro in cultured min6 cells. In addition, nesfatin-1 up-regulates the phosphorylation of AKT in pancreas and min6 islet cells. In mice fed normal diet, peripheral nesfatin-1 significantly increased insulin-stimulated phosphorylation of AKT in skeletal muscle, adipose tissue and liver; similar effects were observed in skeletal muscle and adipose tissue in mice fed high fat diet. At basal conditions and after insulin stimulation, peripheral nesfatin-1 markedly increased GLUT4 membrane translocation in skeletal muscle and adipose tissue in mice fed either diet. In vitro studies showed that nesfatin-1 increased both basal and insulin-stimulated levels of AKT phosphorylation in cells derived from skeletal muscle, adipose tissue and liver.

Conclusions

Our studies demonstrate that nesfatin-1 alters glucose metabolism by mechanisms which increase insulin secretion and insulin sensitivity via altering AKT phosphorylation and GLUT 4 membrane translocation in the skeletal muscle, adipose tissue and liver.  相似文献   

15.
16.
To study the role of CD25(+) regulatory T cells (T(regs)) in peripheral B cell tolerance, we generated transgenic rat insulin promoter RIP-OVA/HEL mice expressing the model Ags OVA and HEL in pancreatic islet beta cells (where RIP is rat insulin promoter and HEL is hen egg lysozyme). Adoptively transferred transgenic OVA-specific CD4(+) and CD8(+) T cells proliferated only in the autoantigen-draining pancreatic lymph node (PLN), demonstrating pancreas-specific Ag expression. Transferred HEL-specific transgenic B cells (IgHEL cells) disappeared within 3 wk from transgenic but not from nontransgenic mice immunized with autoantigen. Depletion of CD25(+) FoxP3(+) cells completely restored IgHEL cell numbers. T(reg) exerted an analogous suppressive effect on endogenous HEL-specific autoreactive B cells. T(regs) acted by inhibiting the proliferation of IgHEL cells in the spleen and PLN and by systemic induction of their apoptosis. Furthermore, they reduced BCR and MHC II surface expression on IgHEL cells in the PLN. These findings demonstrate that autoreactive B cells specific for a nonlymphoid tissue autoantigen are controlled by T(regs).  相似文献   

17.
Plasma membrane-associated sialidase is a key enzyme for ganglioside hydrolysis, thereby playing crucial roles in regulation of cell surface functions. Here we demonstrate that mice overexpressing the human ortholog (NEU3) develop diabetic phenotype by 18-22 weeks associated with hyperinsulinemia, islet hyperplasia, and increased beta-cell mass. As compared with the wild type, insulin-stimulated phosphorylation of the insulin receptor (IR) and insulin receptor substrate I was significantly reduced, and activities of phosphatidylinositol 3-kinase and glycogen synthase were low in transgenic muscle. IR phosphorylation was already attenuated in the younger mice before manifestation of hyperglycemia. Transient transfection of NEU3 into 3T3-L1 adipocytes and L6 myocytes caused a significant decrease in IR signaling. In response to insulin, NEU3 was found to undergo tyrosine phosphorylation and subsequent association with the Grb2 protein, thus being activated and causing negative regulation of insulin signaling. In fact, accumulation of GM1 and GM2, the possible sialidase products in transgenic tissues, caused inhibition of IR phosphorylation in vitro, and blocking of association with Grb2 resulted in reversion of impaired insulin signaling in L6 cells. The data indicate that NEU3 indeed participates in the control of insulin signaling, probably via modulation of gangliosides and interaction with Grb2, and that the mice can serve as a valuable model for human insulin-resistant diabetes.  相似文献   

18.
TIMP-1转基因小鼠纯合子的建立及建系   总被引:5,自引:0,他引:5  
采用遗传学育种方法 ,使外源基因整合位点随机的基质金属蛋白酶抑制剂 1(TIMP 1)转基因小鼠成为单一整合位点的纯合子转基因小鼠而建立TIMP 1转基因小鼠品系 .通过受精卵原核显微注射方法 ,获得带有人TIMP 1基因的Founder小鼠 .将转基因小鼠与正常小鼠交配 ,得到子代小鼠 .通过PCR及Southern印迹等方法 ,检测TIMP 1DNA在转基因小鼠体内的整合情况 ,阳性率达5 0 %后 ,进行近亲交配 .提取小鼠组织总RNA ,Northern印迹分析阳性小鼠各组织外源性TIMP 1mRNA表达情况 ,以正常NIH小鼠做对照 .获得了 6代小鼠共 4 2 4只 ,其中PCR阳性鼠 2 72只 ,Southern阳性鼠 2 2 6只 ,纯合子转基因小鼠 12 8只 ;F4代后阳性率达到 95 %以上 .转基因小鼠TIMP 1基因表达情况在肾脏的丰度明显高于肝脏和脾脏 (P <0 0 1) ,而肝和脾之间并没有显著差异 (P>0 0 5 ) .外源基因在转基因小鼠体内可以稳定遗传 ,并得到了整合有TIMP 1基因的纯合子转基因小鼠 ,且在阳性的转基因小鼠体内在肾脏中特异性表达 ,为以后开展TIMP 1的肾脏病理生理研究提供了有用的手段  相似文献   

19.
20.
Manganese superoxide dismutase (MnSOD) is the enzyme that converts toxic O(2)(-) to H(2)O(2) in mitochondria. Previous reports showed that a deficiency of MnSOD in mice was neonatal lethal. Therefore, a model mouse was not available for the analysis of the pathological role of O(2)(-) injuries in adult tissues. To explore an adult-type model mouse, we designed tissue-specific MnSOD conditional knockout mice using a Cre-loxp system. First, we crossbred MnSOD flox mice with transgenic mice expressing Cre recombinase under the control of the chicken actin promoter (CAG). We confirmed that CAG MnSOD knockout mice were completely deficient in MnSOD and died as neonates, validating the use of the Cre-loxp system. Next, we generated liver-specific MnSOD-deficient mice by crossbreeding with Alb-Cre transgenic mice. MnSOD activity and protein were both significantly downregulated in the liver of liver-specific MnSOD knockout mice. However, no obvious morphological abnormality was observed in the liver when biochemical alterations such as lipid peroxidation were not detectable, suggesting a redundant or less important physiological role for MnSOD in the liver than previously thought. In the present study, we successfully generated tissue-specific MnSOD conditional knockout mice that would provide a useful tool for the analysis of various age-associated diseases such as diabetes mellitus, Parkinson's disease, stroke, and heart disease, when crossbred with tissue-specific transgenic Cre mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号