首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization and crystal structures of three new copper complexes derived from 1,3-bis(aryl)triazenido ligands bearing either a methoxycarbonyl, methylthio or a hydroxymethyl group in the ortho position of one of the aromatic rings are reported. In addition to the coordination of the triazenido fragment, the Lewis basic groups coordinate to the copper centers to form complexes with different nuclearity: {1-[2-(methoxycarbonyl)phenyl]-3-[4-methylphenyl]}triazene and {1-[2-(methylthio)phenyl]-3-[4-methylphenyl]}triazene form stable dinuclear and tetranuclear Cu(I) complexes, respectively. Reaction of {1-[2-(hydroxymethyl)phenyl]-3-[4-methylphenyl]}triazene with either Cu(I) or Cu(II) results in a novel Cu(II) hexanuclear macrocyclic complex.  相似文献   

2.
An in vitro and in vivo study of some copper chelating anti-inflammatory agents for alleviation of inflammation associated with rheumatoid arthritis (RA) has been conducted. Two copper chelating agents, N(1)-(2-aminoethyl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine ([555-N]) and N-(2-(2-aminoethylamino)ethyl)picolinamide ([H(555)-N]) have been synthesized as their hydrochloride salt; their protonation constants and formation constants with Cu(II), Zn(II) and Ca(II) determined by glass electrode potentiometry at 298K and an ionic strength of 0.15M. Cu(II) formed stable complexes at physiological pH while the in vivo competitors, Zn(II) and Ca(II) formed weak complexes with both chelating agents. Both [555-N] and [H(555)-N] showed better selectivity for Cu(II) than for Zn(II) and Ca(II). Electronic spectra for species formed at physiological pH suggest a square planar geometry. Speciation calculations using a blood plasma model predicted that these copper chelating agents are able to mobilize Cu(II) in vivo, while bio-distribution studies of their (64)Cu(II)-labelled complexes at physiological pH showed tissue accumulation and retention indicating an encouraging biological half life.  相似文献   

3.
Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10.  相似文献   

4.
Eight oxy-bridged dinuclear copper(II) complexes with catecholase-like sites, [Cu(L1)X]2 (HL1 = 1-diethylaminopropan-2-ol, X=N3- 1, NCO- 2, and NO2- 3), [Cu(L2)X]2 (HL2=N-ethylsalicylaldimine, X=NO3- 4, Cl- 5, N3- 6, NCS- 7), and [Cu(L3)]2(ClO4)2, 8 (HL3=N-(salicylidene)-N'-(2-pyridylaldene)propanediamine) have been prepared and characterized. The single crystal X-ray analysis show that the structures of complexes 6 and 8 are dimeric with two adjacent copper(II) atoms bridged by pairs of micro-oxy atoms from the L2 and L3 ligands. Magnetic susceptibility measurements in the temperature range 4-300 K indicate significant antiferromagnetic coupling for 4, 5 and 7 and ferromagnetic coupling for 6 between the copper(II) atoms. The catecholase activity of complexes for the oxidation of 3,5-di-tert-butylcatechol by O2 was studied and it was found that the complexes with the bond distance of Cu(II)...Cu(II) located at 2.9-3.0 A show higher catecholase activity.  相似文献   

5.
Copper(II) and platinum(II) complexes of 2-benzoylpyrrole (2-BZPH) were synthesized and characterized with IR, 1H and 13C NMR spectroscopies and coordination geometry with ligands arranged in transoid fashion. The crystal structure of [Cu(II)(2-BZP)2] was determined by X-ray diffraction. Death of complex treated Jurkat cells was measured by flow cytometry. The bis-chelate complexes [Cu(II)(2-BZP)2] and [Pt(II)(2-BZP)2] adopt square-planar coordination geometry with ligands, arranged in transoid fashion. Concentrations of 1-10 microM Platinum(II) complexes reduced cell survival from 100% to 20%, in contrast to the copper(II) complex which caused no cell death at a concentration of 10 microM. While the Pt(II) complexes may have damaged DNA to induce cell death, treatment with the Cu(II) complex did not induce Jurkat cell death.  相似文献   

6.
Previous investigations of the potential of metal-organic compounds as inhibitors of human immunodeficiency virus type I protease (HIV-1 PR) showed that the copper(II) complex diaqua [bis(2-pyridylcarbonyl)amido] copper(II) nitrate dihydrate and the complex bis[N2-(2,3,6-trimethoxybenzyl)-4-2-pyridinecarboxamide] copper(II) behaved as inhibitors of HIV-1 PR. In a search for similar readily accessible ligands, we synthesised and studied the structural properties of N2-(2-pyridylmethyl)-2-pyridinecarboxamide (L) copper(II) complexes. Three different crystal structures were obtained. Two were found to contain ligand L simultaneously in a tridentate and bidentate conformation [Cu(L(tri)L(bi))]. The other contained two symmetry-related ligands, coordinated through the pyridine nitrogen and the amide oxygen atoms [Cu(L(bi))(2)]. A search of the Cambridge Structural Database indicated that L(tri) resulting from nitrogen bound amide hydrogen metal substitution is favoured over chelation through the amide oxygen atom. In our case, we calculated that the conformation of L(tri) is 11 kcal/mol more favourable than that of L(bi). ESI-MS experiments showed that the Cu(L(bi))(2) structure could not be observed in solution, while Cu(L(tri)L(bi))-related complexes were indeed present. The lack of protease inhibition of the pyridine carboxamide copper(II) complexes was explained by the fact that the Cu(L(bi)L(tri)) complex could not fit into the HIV-1 active site.  相似文献   

7.
Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.  相似文献   

8.
Three hydrazone ligands, H2L1-H2L3, made from salicylaldehyde and ibuprofen- or naproxen-derived hydrazides, were prepared and transformed into the corresponding copper(II) complexes [Cu(II)L1] x H2O, [Cu(II)L2], and [(Cu(II))2(L3)2] x H2O x DMF (Scheme). The X-ray crystal structure of the last-mentioned complex was solved (Fig. 1), showing a square-planar complexation geometry, and the single units were found to form a one-dimensional chain structure (Fig. 2). The interactions of these complexes with CT-DNA were studied by different techniques, indicating that they all bind to DNA by classical and/or non-classical intercalation modes.  相似文献   

9.
Copper-64 ( T(1/2)=12.7 h; beta(+): 0.653 MeV, 17.4%; beta(-): 0.578 MeV, 39%) is produced in a biomedical cyclotron and has applications in both imaging and therapy. Macrocyclic chelators are widely used as bifunctional chelators to bind copper radionuclides to antibodies and peptides owing to their relatively high kinetic stability. In this paper, we evaluated three tetraaza macrocyclic ligands with two, three, and four pendant methanephosphonate functional groups. DO2P [1,4,7,10-tetraazacyclododecane-1,7-di(methanephosphonic acid)], DO3P [1,4,7,10-tetraazacyclododecane-1,4,7-tri(methanephosphonic acid)], and DOTP [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methanephosphonic acid)] were all radiolabeled with (64)Cu in high radiochemical yields. Copper-64-labeled DO2P and DOTP were highly stable in rat serum out to 24 h, while (64)Cu-DO3P remained 73% intact, with the remainder possibly forming a (64)Cu(.)2DO3P dimer by 24 h. The biodistribution experiments were performed in normal Sprague-Dawley rats. Of the three complexes, (64)Cu-DO2P demonstrated the most optimal clearance through the blood and liver. Copper-64-DO3P and (64)Cu-DOTP exhibited higher liver uptake and longer retention of liver activity, possibly because of the large negative charge of the complexes under physiological conditions. All three (64)Cu-labeled complexes showed high accumulation in bone, likely due to the binding of the methanephosphonate groups to hydroxyapatite. These results suggest that this series of methanephosphonate macrocyclic ligands may be useful as potential bone-imaging agents. The thermodynamic stability constants of the Cu(II) complexes with these three ligands were determined, and were found to be significantly higher than those of their acetate analogues. The Cu(II)-DO2P complex exhibited the highest stability constant among divalent transition metal ion DO2P complexes. Metabolism studies of (64)Cu-DO2P in rat liver suggest that the DO2P ligand may be used as a bifunctional chelator for copper radionuclides in radiodiagnostic or radiotherapeutic studies.  相似文献   

10.
Copper complexes with thiophen-2-yl saturated and alpha,beta-unsaturated carboxylic acids as ligands were prepared, characterized and pharmacochemically studied. The available evidence supports a dimeric structure for the complexes of the general formula [Cu2(L)4(MeOH)2] where L are the anions of thiophene 2-carboxylic acid (HL1), 2-(thiophen-2-yl)-acetic acid (HL2), 3-thiophen-2-yl-acrylic acid (HL3), 2-phenyl-3-thiophen-2-yl-acrylic acid (HL4) respectively. The crystal structure of [Cu2(L1)4(MeOH)2] (2) was determined while preliminary X-ray analysis of the copper complex with L4 isolated from MeOH/DMSO solution proved to contain three crystallographically independent dimers of the formula [Cu2(L4)4(MeOH)(dmso)][Cu2(L4)4(MeOH)2][Cu2(L4)4(dmso)2].8MeOH (9). Since lipophilicity is a significant physicochemical property determining distribution, bioavailability, metabolic activity and elimination, we tried to measure experimentally their lipophilicity from RPTLC method. The copper complexes and the ligands (thiophen-2-yl saturated and alpha,beta-unsaturated carboxylic acids) were tested in vitro on: (a) soybean lipoxygenase inhibition, (b) interaction with 1,1-diphenyl-2-picryl-hydrazyl (DPPH) stable free radical, (c) the HO* mediated oxidation of DMSO, (d) inhibition of lipid peroxidation, (e) scavenging of superoxide anion radicals and in vivo for the inhibition of carrageenin-induced rat paw edema. The compounds have shown important antioxidant activity, significant anti-inflammatory activity and potent inhibition of soybean lipoxygenase as a result of their physichochemical features. Complex [Cu2(L1)4(MeOH)2] (2) presents the higher in vivo activity (77.4%) followed by complex [Cu2(L2)4(MeOH)2] (4) (51%). Both complexes are more potent anti-inflammatory agents compared to their respective ligands. Moreover we have performed in vitro studies upon their effect on dsDNA, using adsorptive transfer stripping voltammetry and a dsDNA modified carbon paste electrode. Our conclusions were mainly based upon the effect of the studied compounds on the oxidation signal of guanine and adenine. From the given data it seems that complexes show similarities in their behaviour.  相似文献   

11.
The reactivity of nitrite towards the copper(II) and copper(I) centers of a series of complexes with tridentate nitrogen donor ligands has been investigated. The ligands are bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-bb), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-bb), and bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (ddah) and carry two terminal benzimidazole (1-bb, 2-bb) or pyrazole (ddah) rings and a central amine donor residue. While 2-bb and ddah form two adjacent six-membered chelate rings on metal coordination, 1-bb forms two smaller rings of five members. The binding affinity of nitrite and azide to the Cu(II) complexes (ClO4 as counterion) has been determined in solution. The association constants for the two ligands are similar, but nitrite is a slightly stronger ligand than azide when it binds as a bidentate donor. The X-ray crystal structure of the nitrite complex [Cu(ddah)(NO2)]ClO4 (final R=0.056) has been determined: triclinic P1ˉspace group, a=8.200(2) ?, b=9.582(3) ?, c=15.541(4) ?. It may be described as a perchlorate salt of a “supramolecular” species resulting from the assembly of two complex cations and one sodium perchlorate unit. The copper stereochemistry in the complex is intermediate between SPY and TBP, and nitrite binds to Cu(II) asymmetrically, with Cu-O distances of 2.037(2) and 2.390(3) ? and a nearly planar CuO2N cycle. On standing, solutions of [Cu(ddah)(NO2)]ClO4 in methanol produce the dinuclear complex [Cu(ddah)(OMe)]2(ClO4)2, containing dibridging methoxy groups. In fact the crystal structure analysis (final R=0.083) showed that the crystals are built up by dinuclear cations, arranged on a crystallographic symmetry center, and perchlorate anions. Electrochemical analysis shows that binding of nitrite to the Cu(II) complexes of 2-bb and ddah shifts the reduction potential of the Cu(II)/Cu(I) couple towards negative values by about 0.3 V. The thermodynamic parameters of the Cu(II)/Cu(I) electron transfer have also been analyzed. The mechanism of reductive activation of nitrite to nitric oxide by the Cu(I) complexes of 1-bb, 2-bb, and ddah has been studied. The reaction requires two protons per molecule of nitrite and Cu(I). Kinetic experiments show that the reaction is first order in [Cu(I)] and [H+] and exhibits saturation behavior with respect to nitrite concentration. The kinetic data show that [Cu(2-bb)]+ is more efficient than [Cu(1-bb)]+ and [Cu(ddah)]+ in reducing nitrite. Received: 19 November 1999 / Accepted: 20 January 2000  相似文献   

12.
The in vitro cytotoxic studies of a series of salicylaldehyde semicarbazones, HOC?H?CH=N-NHCONR? (H?R?) and their Cu(II) complexes on a number of human tumor cell lines were conducted and it was observed that their cytotoxicities were enhanced following complexation to copper. These copper(II) complexes also demonstrated higher in vitro activities than the reference drug, cisplatin, on the tumor cell lines at micro molar range. Apoptotic assays and cell cycle analysis of the copper complexes, [Cu(HBnz?)Cl] and [Cu(HBu?)Cl] revealed that they mediated cytotoxicity in MOLT-4 cells via apoptosis. Further proteomic investigation of [Cu(HBnz?)Cl] and [Cu(HBu?)Cl] with respect to their protein expression profiles associated with their mode of action was conducted. By comparing the expression levels of 33 identified protein spots amongst the respective compound-treated profiles, we identified similarities in protein expression patterns between the two copper(II) complexes. The possible roles of the identified proteins in the execution of apoptosis by these copper(II) complexes are discussed.  相似文献   

13.
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene ([15]pyN5), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN5), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN5 was investigated by 1H NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN5)]2+ determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.  相似文献   

14.
The neutral mononuclear copper(II) complexes with the quinolone antibacterial drugs, pipemidic acid and N-propyl-norfloxacin, in the presence or absence of nitrogen-donor heterocyclic ligands, 2,2′-bipyridine, 1,10-phenanthroline or 2,2′-dipyridylamine, have been prepared and characterized spectroscopically. The interaction of copper(II) with the deprotonated quinolone ligand leads to the formation of the neutral mononuclear complexes of the type [Cu(quinolone)2(H2O)] (1)–(2) while the presence of the N-donor ligand leads to the formation of the neutral mononuclear complexes of the type [Cu(quinolone)(N-donor)Cl] (3)–(8). In all the complexes, copper(II) is pentacoordinate having a distorted square pyramidal geometry. The electron paramagnetic resonance spectra of 1 and 2 are typical of mononuclear Cu(II) complexes, while for the mixed-ligands complexes 3–8 a mixture of dimeric and monomeric species is indicated. The interaction of the complexes with calf-thymus DNA has been investigated with diverse spectroscopic techniques and has shown that the complexes can be bound to calf-thymus DNA by the intercalative mode. The antimicrobial activity of the complexes has been tested on three different microorganisms. All the complexes show an increased biological activity in comparison to the corresponding free quinolone ligand.  相似文献   

15.
《Inorganica chimica acta》1988,151(4):261-263
The model process of oxidation of reduced glutathione through chelate copper complexes has been studied, the former being structural analogues of the active centers of ‘blue’ copper proteins. Glutathione forms the relatively stable intermediate CuLSG+ with copper complexes in acetonitrile. The intramolecular electron transfer S(glutathione)→Cu(II) is the rate-determining step of the substrate oxidation. On the basis of rate constant (kobs) values as well as activation energy (E3) values, we have concluded that there is a possibility of functional modelling of active centers of type 1 Cu by copper complexes with thioaza ligands.  相似文献   

16.
Copper(II) complexes of three linear unsymmetrical tridentate ligands viz. N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L1), N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L2) and N,N-dimethyl-N'-((6-methyl)pyrid-2-ylmethyl)ethylenediamine (L3) have been isolated and characterized by elemental analysis, electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes [Cu(L2)Cl2] and [Cu(L3)Cl2] have been structurally characterized by X-ray crystallography. The [Cu(L2)Cl2] complex crystallizes in the monoclinic space group P2(1)/n with a=11.566(2) A, b=7.369(1) A, c=15.703(3) A, alpha=90 degrees , beta=109.68(8) degrees , gamma=90 degrees and Z=4 while [Cu(L3)Cl2] crystallizes in the triclinic space group P1 with a=9.191(2) A, b=12.359(3) A, c=14.880(3) A, alpha=79.61(13) degrees , beta=86.64(13) degrees , gamma=87.28(8) degrees and Z=2. The coordination geometries around copper (II) in these two complexes are best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). The distorted CuN3Cl basal plane in them is comprised of three nitrogen atoms of the meridionally coordinated ligand and a chloride ion and the axial position is occupied by the other chloride ion. The interaction of these complexes with Calf Thymus DNA (CT DNA) has been studied by using absorption, emission and circular dichroic spectral methods, thermal denaturation studies, viscometry and cyclic and differential pulse voltammetry. A strong blueshift in the ligand field band and a redshift in the ligand based bands of the copper(II) complexes on binding to DNA imply a covalent mode of DNA binding of the complexes, which involves coordination of most possibly guanine N7 nitrogen of DNA to form a CuN4 chromophore. This is supported by studying the interaction of the complexes with N-methylimidazole (N-meim), guanosine monophosphate (GMP), adenosine monophosphate (AMP) and cytidine (cytd) by ligand field and EPR spectral methods, which indicate the formation of a CuN4 chromophore only in the case of the more basic N-meim and GMP. The DNA melting curves obtained in the presence of copper(II) complexes reveal a monophasic and irreversible melting of the DNA strands and the high positive DeltaTm values (12-21 degrees C) also support the formation of strong Cu-N bonds by the complexes with DNA, leading to intra- and/or interstrand crosslinking of DNA. Competitive ethidium bromide (EthBr) binding studies show that the L2 and L3 complexes are less efficient than the L1 complex in quenching EthBr emission, which is consistent with their forming DNA crosslinking preventing the displacement of the DNA-bound EthBr. A very slight decrease in relative viscosity of DNA is observed on treating the L1 and L2 complexes with CT DNA; however, a relatively significant decrease is observed for the L3 complex suggesting that the length of the DNA fiber is shortened. DNA cleavage experiments show that all the complexes induce the cleavage of pBR322 plasmid DNA, the complex of L1 being more efficient than those of sterically hindered L2 and L3 ligands.  相似文献   

17.
The purpose of this study was to investigate the complexes formed by copper(II) with potential non-steroidal anti-inflammatory agents (NSAIDs) under physiological conditions. A former study suggested that 2-benzylaminomethylpyrrolidine ligands could be good candidates as potential OIL (OH-inactivating ligand) when complexed to copper(II). In order to assess the chemical behavior as OIL, [S]-2-[N-(2′-hydroxybenzyl)aminomethyl]pyrrolidine (OHbamp) was synthesized and bound to copper(II). Physico-chemical properties were determined at 37 °C in 0.15 M NaCl using glass electrode potentiometry, UV-Vis and circular dichroism spectroscopies, before and after copper(II) complexation. [Cu(OHbamp)(H2O)3]+ was the main complex found at both physiological and inflammatory pH values, showing appreciable stability at pathological pH compared to copper(II) complexes of histidine, the predominant low-molar-mass ligand of copper(II) in blood plasma. However, neutral species such as [Cu(OHbamp)2(H2O)2] and [Cu(OHbamp)(OH)(H2O)3] are predominant only above pH 8, preventing a significant amount of drug from diffusing through membranes at inflammatory pH. In conclusion, copper(II)-OHbamp system does not meet all the requirements to be an OIL. Nevertheless, these results allow us to better identify the chemical features needed for a good OIL candidate.  相似文献   

18.
The synthesis, characterization and comparative biological study of a series of antibacterial copper complexes with heterocyclic sulfonamides were reported. Two kinds of complexes were obtained with the stoichiometries [Cu(L)2] . H2O and [Cu(L)2(H2O)4] . nH2O. They were characterized by infrared and electronic spectroscopies and the crystal structure of [Cu(sulfisoxazole)2(H2O)4] . 2H2O was determined by single crystal X-ray diffraction. It crystallized in the C2/c with Z = 8 monoclinic space group C2/c with Z = 8. The Cu(II) is in a slightly tetragonal distorted octahedron formed by four oxygen atoms from water molecules and two nitrogen atoms from two isoxazole rings. The antimicrobial activity was evaluated for all the synthesized complexes and ligands using the agar dilution test. The results showed that the complexes with five-membered heterocyclic rings were more active than the free sulfonamides while the pyrimidine, pyridine and pyridazine complexes had similar or less activity than the free ligands. In order to find an explanation for this behavior lipophilicity and superoxide dismutase-like activity were tested, showing that the [Cu(sulfamethoxazol)2(H2O)4] . 3H2O presented the highest antimicrobial potency and a superoxide dismutase-like activity comparable with pharmacological active compounds.  相似文献   

19.
Monomeric complexes [Cu(LL)(L′)(NO3)2] (where LL is 2,2′-bipyridine or 1,10-phenanthroline and L′ is 1-methylimidazole) and dimeric complexes [Cu2(LL)2(L″)]NO3 (where L″ is an anion of imidazole or 2-methylimidazole) have been synthesized. These complexes show a d-d transition in the range of 600 to 710 nm. The infrared spectra of monomeric complexes show that the NO3 is coordinated to copper as a monodentate ligand through an oxygen atom. The ESR spectra of monomeric complexes indicate that the ligands are bonded in axial environment around copper (square pyramidal geometry) with three nitrogen donors occupying an equatorial plane. The ESR spectra of dimeric complexes show a broad signal at about G = 2 with an additional weak signal at about G = 4. This suggests that two copper atoms are in close proximity of < 7 Å. The ESR studies reveal that the formation of imidazolate-bridged binuclear copper(II) complexes from [Cu(LL)(L′)(NO3)2] and imidazole is pH dependent with apparent pKa values of 8.25 to 8.30. The superoxide dismutase activity of ICu(phen)(L′)(NO3)2], [Cu(bipy)(L′)(NO3)2], and [Cu2(bipy)2(L′)2(L″)]NO3 has been measured and the latter two complexes show better activity than the former complex.  相似文献   

20.
Saccharose, forming sufficiently stable complexes with copper(II) ions in alkaline solutions, was found to be a suitable ligand for copper(II) chelating in alkaline (pH>12) electroless copper deposition solutions. Reduction of copper(II)-saccharose complexes by hydrated formaldehyde was investigated and the copper deposits formed were characterized. The thickness of the compact copper coatings obtained under optimal operating conditions in 1h reaches ca. 2 microm at ambient temperature. The plating solutions were stable and no signs of Cu(II) reduction in the bulk solution were observed. Results were compared with those systems operating with other copper(II) ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号