共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection 总被引:2,自引:2,他引:2
Johannes D. Clausen Gunna Christiansen Henrik U. Holst & Svend Birkelund 《Molecular microbiology》1997,25(3):441-449
The host cell cytoskeleton is known to play a vital role in the life cycles of several pathogenic intracellular microorganisms by providing the basis for a successful invasion and by promoting movement of the pathogen once inside the host cell cytoplasm. McCoy cells infected with Chlamydia trachomatis serovars E or L2 revealed, by indirect immunofluorescence microscopy, collocation of microtubules and Chlamydia -containing vesicles during the process of migration from the host cell surface to a perinuclear location. The vast majority of microtubule-associated Chlamydia vesicles also collocated with tyrosine-phosphorylated McCoy cell proteins. After migration, the Chlamydia -containing vesicles were positioned exactly at the centre of the microtubule network, indicating a microtubule-dependent mode of chlamydial redistribution. Inhibition of host cell dynein, a microtubule-dependent motor protein known to be involved in directed vesicle transport along microtubules, was observed to have a pronounced effect on C. trachomatis infectivity. Furthermore, dynein was found to collocate with perinuclear aggregates of C. trachomatis E and L2 but not C. pneumoniae VR-1310, indicating a marked difference in the cytoskeletal requirements for C. trachomatis and C. pneumoniae during early infection events. In support of this view, C. pneumoniae VR-1310 was shown to induce much less tyrosine phosphorylation of HeLa cell proteins during uptake than that seen for C. trachomatis . 相似文献
2.
The effect of Chlamydia trachomatis infection on the host cell cytoskeleton and membrane compartments 总被引:3,自引:0,他引:3
Human epithelial cells and the McCoy cell line were infected with Chlamydia trachomatis, serotype E. The organization of the cytoplasm was then studied with probes which stained cytoskeletal components and membrane compartments. The major actin-containing stress fibre bundles were not associated with inclusions due to the peri-basal and peri-apical location of these bundles within the host cell. The cytokeratin network was distorted by the presence of inclusions so that a common basket of these intermediate filaments surrounded both nucleus and peri-nuclear inclusions. The microtubule network was similarly distorted, but the nucleus and inclusion were surrounded by separate rather than joint baskets of tubules. After reversible depolymerization by nocadazole the microtubules in amniotic epithelial cells began to reassemble at the peri-nuclear microtubule-organizing centre, so that independent microtubule networks were rapidly regenerated around the nucleus and inclusion. Mitochondria of amniotic epithelial cells were vitally stained with the fluorescent probe DiOC6 (3,3'-dihexyloxacarbocyanine iodide) after 48 h of infection and found to be widely distributed throughout the host cytoplasm. When the morphology of the Golgi complex was examined with C6-NBD-ceramide (N-[7-(4-nitrobenzo-2-oxa-1,3-diazole)] aminocaproyl sphingosine) the main cisternae were retained in a juxta-nuclear position, although scattered stained structures were also present close to the cytoplasmic surface of the inclusion. These results demonstrate that the peri-nuclear position of inclusions is determined by the configuration of the cytoskeleton, and that normal host-cell architecture is maintained during infection, albeit in a distorted form. 相似文献
3.
Teresa Rondon Rota 《In vitro cellular & developmental biology. Plant》1977,13(5):280-292
Summary Trachoma organisms of serotype B were grown serially in irradiated cells (McCoy, BHK-21, Microbiological Associates, and BHK-21,
Lister) and tested for infectivity in monolayers of five mammalian cell lines (BHK-21, CHO, HeLa S3, McCoy and OWMK) and two diploid strains (ST/BTL and WI-38). All cell types had low susceptibility to chlamydial infection
but the number of inclusions increased when the inoculum was centrifuged onto the monolayers, or when the cells were irradiated.
Infection was higher in non-irradiated CHO than in irradiated CHO in three out of a total of six experiments. Inclusion number
was increased 300 times in HeLa S3 and up to three times in the other cell types after treatment with diethylaminoethyl-dextran (DEAE-D). Serial passage of
Chlamydia trachomatis serotype B (strain Har-36) in CO60 McCoy and CO60 BHK-21 Lister resulted in partial adaptation of the strain to the host cell. The phenomenon of adaptation of serotype B to
McCoy compensated for the lower susceptibility of this cell revealed when McCoy cells were inoculated with trachoma elementary
bodies grown in BHK-21 Lister or in chick embryo yolk sac. Trachoma organisms of immunotypes A, B and C prepared in yolk sac
produced more inclusion-forming units per ml in CO60 BHK-21 Lister than in CO60 McCoy.
This research was supported by a grant from the National Eye Institute (EI-00812-08), and by the Arabian American Oil Company.
The paper is dedicated to the memory of Francis B. Gordon, who pioneered research methods for the cultivation of trachoma
and inclusion conjunctivitis (TRIC) agents in cell culture. Dr. Gordon patiently studied tables and photographs which accompany
this text when he visited our laboratory on the day prior to his sailing to England on the ill-fated voyage in which he and
Mrs. Gordon perished (October 1973). 相似文献
4.
Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets 下载免费PDF全文
Chlamydia trachomatis (Ct) is a Gram‐negative obligate intracellular pathogen of humans that causes significant morbidity from sexually transmitted and ocular diseases globally. Ct acquires host fatty acids (FA) to meet the metabolic and growth requirements of the organism. Lipid droplets (LDs) are storehouses of FAs in host cells and have been proposed to be a source of FAs for the parasitophorous vacuole, termed inclusion, in which Ct replicates. Previously, cells devoid of LDs were shown to produce reduced infectious progeny at 24 hr postinfection (hpi). Here, although we also found reduced progeny at 24 hpi, there were significantly more progeny at 48 hpi in the absence of LDs compared to the control wild‐type (WT) cells. These findings were confirmed using transmission electron microscopy where cells without LDs were shown to have significantly more metabolically active reticulate bodies at 24 hpi and significantly more infectious but metabolically inert elementary bodies at 48 hpi than WT cells. Furthermore, by measuring basal oxygen consumption rates (OCR) using extracellular flux analysis, Ct infected cells without LDs had higher OCRs at 24 hpi than cells with LDs, confirming ongoing metabolic activity in the absence of LDs. Although the FA oleic acid is a major source of phospholipids for Ct and stimulates LD synthesis, treatment with oleic acid, but not other FAs, enhanced growth and led to an increase in basal OCR in both LD depleted and WT cells, indicating that FA transport to the inclusion is not affected by the loss of LDs. Our results show that Ct regulates inclusion metabolic activity and growth in response to host FA availability in the absence of LDs. 相似文献
5.
The development of Chlamydia trachomatis inclusions within the host eukaryotic cell during interphase and mitosis 总被引:3,自引:0,他引:3
The dynamic nature of Chlamydia trachomatis inclusions was studied by video and 35 mm time-lapse photomicrography of live cells, and by immunolocalization of inclusions in fixed cells. A serotype E isolate was used to infect the MCCoy cell line and endometrial epithelia. Then resulting inclusions were observed over 4 d. They appeared as slowly expanding fluid-filled membrane vesicles whose growth varied considerably, and which were subject to great physical distortion by the host cell during interphase and mitosis. When this distortion became extreme the inclusion was observed to divide. However, as inclusions were mobile within the cytoplasm and thus able to come into contact with each other, there was a net tendency for the opposite process of inclusion fusion to occur when cells contained more than one inclusion. The proportion of infected cells decreased with time as a result of host cell proliferation, despite transmission of inclusions to progeny at the time of mitosis. Inclusion growth physically disrupted karyokinesis and cytokinesis so that host cell division became distorted or blocked on the second or third day of infection. Cell death eventually occurred by a very rapid lysis event. 相似文献
6.
Beatty WL 《Cellular microbiology》2007,9(9):2141-2152
Chlamydiae are obligate intracellular bacteria that replicate within the confines of a membrane-bound vacuole termed the inclusion. The final event in the infectious process is the disruption of the inclusion membrane and release of a multitude of infectious elementary bodies, each capable of eliciting a new infection. Strains of the trachoma biovar of Chlamydia trachomatis are released from the host cell without concomitant host cell death. In this study, analysis of events associated with chlamydial egress revealed that the integrity of the host cell plasma membrane was compromised prior to the inclusion membrane. This disruption was accompanied by the appearance of LAMP-1 at the infected cell surface, implicating lysosome repair of plasma membrane lesions in response to infection. Analysis of the effects of calcium chelators and actin stabilizing agents, indicated calcium-induced actin depolymerization as a requisite to lysosome-plasma membrane fusion and host cell survival. A consequence of this lysosome-mediated repair process, was the retention of residual bacteria within the surviving host cell, providing a unique mechanism for intracellular persistence of C. trachomatis. 相似文献
7.
Adrian Mehlitz Eva Eylert Claudia Huber Buko Lindner Nadine Vollmuth Karthika Karunakaran Werner Goebel Wolfgang Eisenreich Thomas Rudel 《Molecular microbiology》2017,103(6):1004-1019
Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco‐2 cells with 13C‐marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC‐MS‐based isotopologue analysis of protein‐derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT‐ICR‐MS analyses also demonstrated that label from exogenous 13C‐glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6‐phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous 13C‐malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co‐substrate usage of intracellular C. trachomatis in a stream‐lined bipartite metabolism with host cell‐supplied amino acids for protein biosynthesis, host cell‐provided glucose 6‐phosphate for cell wall biosynthesis, and, to some extent, one or more host cell‐derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso‐2,6‐diaminopimelate required for the formation of chlamydial peptidoglycan. 相似文献
8.
T cell responses to Chlamydia trachomatis 总被引:13,自引:0,他引:13
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted disease in the United States, as well as the leading cause of preventable blindness worldwide. Immunity to C. trachomatis requires a variety of cell types, each employing an array of effector functions. Recent work has demonstrated that both CD4+ and CD8+ T lymphocytes play a major role in protective immunity to C. trachomatis, predominantly through their secretion of interferon-gamma. This review describes the generation of acquired immunity to C. trachomatis and focuses on how T cells contribute to both protection and immunopathology. 相似文献
9.
Wizel B Nyström-Asklin J Cortes C Tvinnereim A 《Microbes and infection / Institut Pasteur》2008,10(14-15):1420-1430
Chlamydia infections constitute a major public health problem. Although multiple arms of the immune system participate in the control of Chlamydia in infected hosts, T lymphocytes are essential. This review focuses on the roles that CD8(+)T cells may play in immunoprotection and immunopathology following recognition of Chlamydia-infected cells. 相似文献
10.
Perfettini JL Ojcius DM Andrews CW Korsmeyer SJ Rank RG Darville T 《The Journal of biological chemistry》2003,278(11):9496-9502
The BCL-2 family member BAX plays a critical role in regulating apoptosis. Surprisingly, bax-deficient mice display limited phenotypic abnormalities. Here we investigate the effect of BAX on infection by the sexually transmitted pathogen, Chlamydia muridarum (the mouse pneumonitis strain of Chlamydia trachomatis). Bax(-/-) cells are relatively resistant to Chlamydia-induced apoptosis, and fewer bacteria are recovered after two infection cycles from Bax(-/-) cells than from wild-type cells. These results suggest that BAX-dependent apoptosis may be used to initiate a new round of infection, most likely by releasing Chlamydia-containing apoptotic bodies from infected cells that could be internalized by neighboring uninfected cells. Nonetheless, infected Bax(-/-) cells die through necrosis, which is normally associated with inflammation, more often than infected wild-type cells. These studies were confirmed in mice infected intravaginally with C. muridarum; since the infection disappears more quickly from Bax(-/-) mice than from wild-type mice, secretion of proinflammatory cytokines is increased in Bax(-/-) mice, and large granulomas are present in the genital tract of Bax(-/-) mice. Taken together, these data suggest that chlamydia-induced apoptosis via BAX contributes to bacterial propagation and decreases inflammation. Bax deficiency results in lower infection and an increased inflammatory cytokine response associated with more severe pathology. 相似文献
11.
NF-kappa B activation is not required for Chlamydia trachomatis inhibition of host epithelial cell apoptosis 总被引:2,自引:0,他引:2
Xiao Y Zhong Y Su H Zhou Z Chiao P Zhong G 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(3):1701-1708
Chlamydia trachomatis, an obligate intracellular bacterial species, is known to inhibit host cell apoptosis. However, the chlamydial antiapoptotic mechanism is still not clear. Because NF-kappaB activation is antiapoptotic, we tested the potential role of NF-kappaB activation in chlamydial antiapoptotic activity in the current study. First, no obvious NF-kappaB activation was detected in the chlamydia-infected cells when these cells were resistant to apoptosis induced via either the intrinsic or extrinsic apoptosis pathways. Second, inhibition of NF-kappaB activation with pharmacologic reagents failed to block the chlamydial antiapoptotic activity. Finally, NF-kappaB p65 gene deletion did not prevent chlamydia from inhibiting host cell apoptosis. These observations together have demonstrated that NF-kappaB activation is not required for the chlamydial antiapoptotic activity. 相似文献
12.
13.
Lipid droplets (LDs) are ubiquitous but poorly understood neutral-lipid-rich eukaryotic organelles that may participate in functions as diverse as lipid homeostasis, membrane traffic, and signaling . We report that infection with the obligate intracellular pathogen Chlamydia trachomatis, the causative agent of trachoma and many sexually transmitted diseases , leads to the accumulation of neutral-lipid-rich structures with features of LDs at the cytoplasmic surface of the bacteria-containing vacuole. To identify bacterial factors that target these organelles, we screened a collection of yeast strains expressing GFP-tagged chlamydial ORFs and identified several proteins with tropism for eukaryotic LDs. We determined that three of these LD-associated (Lda) proteins are translocated into the mammalian host and associate with neutral-lipid-rich structures. Furthermore, the stability of one Lda protein is dependent on binding to LDs, and pharmacological inhibition of LD formation negatively impacted chlamydial replication. These results suggest that C. trachomatis targets LDs to enhance its survival and replication in infected cells. The co-option of mammalian LD function by a pathogenic bacterium represents a novel mechanism of eukaryotic organelle subversion and provides unique research opportunities to explore the function of these understudied organelles. 相似文献
14.
目的:探索沙眼衣原体(Chlamydia trachomatis,Ct)持续感染状态下,NOD1、IL-6及STAT3分子的表达情况和相互关系。方法:利用HeLa229细胞或STAT3基因沉默的HeLa229细胞,分别建立沙眼衣原体的急性感染和持续感染模型;应用Western Blot及ELISA等方法检测不同感染状态下STAT3及NOD1蛋白表达水平以及细胞因子IL-6的分泌水平。结果:HeLa229细胞在Ct感染状态下,STAT3和NOD1以及IL-6表达水平均升高,且于持续感染状态下的升高较急性感染状态下的升高更明显;沉默STAT3基因后,Ct感染的细胞NOD1及IL-6的表达水平下降明显。结论:HeLa229细胞在Ct持续感染状态下,STAT3能上调NOD1及IL-6表达水平,上述分子间存在NOD1-IL-6-STAT3正反馈信号通路。 相似文献
15.
Satchell KJ 《Microbes and infection / Institut Pasteur》2003,5(13):1241-1247
Vibrio cholerae induces either non-inflammatory diarrhea or inflammatory gastroenteritis, depending on the presence of cholera toxin, a fluid secretion inducer and a modulator of host immunity. In the absence of cholera toxin, other toxins induce inflammation, resulting in gastroenteritis. Thus, multiple toxins likely affect the safety of live attenuated vaccines. 相似文献
16.
The Chlamydia-specific hypothetical protein CT795 was dominantly recognized by human antisera produced during C. trachomatis infection but not by animal antisera raised against dead chlamydia organisms. The immundominant region recognized by the human antibodies was mapped to the N-terminal fragment T22-S69. The endogenous CT795 was detected in the cytoplasm of host cells during C. trachomatis infection and was highly enriched in the host cytosolic fraction but absent in the purified chlamydia organisms, suggesting that CT795 is synthesized and secreted into host cell cytoplasm without incorporation into the organisms. All C. trachomatis serovars tested secreted CT795. A predicted signal peptide of CT795 directed the mature PhoA to cross Escherichia coli inner membranes. The secretion of CT795 in Chlamydia-infected cells was inhibited by a C(16) compound targeting signal peptidase I, but not by a C(1) compound known to block the type III secretion pathway. These results suggest that CT795, like CPAF (a Chlamydia-secreted virulence factor), is secreted into the host cell cytoplasm via a sec-dependent mechanism and not by a type III secretion pathway. The above characterizations of CT795 have provided important information for further understanding the potential roles of CT795 in C. trachomatis pathogenesis. 相似文献
17.
目的:研究沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路的关系。方法:利用化学抑制剂U0126阻断MAPK/ERK信号通路,然后分别采用流式细胞术、Caspase-3活性检测试剂盒和Western Blot实验检测沙眼衣原体感染细胞在凋亡诱导剂Etoposide作用下细胞凋亡率和Caspase-3活性变化,以及PARP是否发生裂解。结果:当MAPK/ERK信号通路被阻断时,在Etoposide的作用下,沙眼衣原体感染细胞凋亡率明显上升,同时Caspase-3被活化和PARP发生裂解。结论:沙眼衣原体抑制宿主细胞凋亡活性与MAPK/ERK信号通路激活有关。 相似文献
18.
An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response 总被引:5,自引:0,他引:5
Starnbach MN Loomis WP Ovendale P Regan D Hess B Alderson MR Fling SP 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(9):4742-4749
During its developmental cycle, the intracellular bacterial pathogen Chlamydia trachomatis remains confined within a protective vacuole known as an inclusion. Nevertheless, CD8(+) T cells that recognize Chlamydia Ags in the context of MHC class I molecules are primed during infection. MHC class I-restricted presentation of these Ags suggests that these proteins or domains from them have access to the host cell cytoplasm. Chlamydia products with access to the host cell cytoplasm define a subset of molecules uniquely positioned to interface with the intracellular environment during the pathogen's developmental cycle. In addition to their use as candidate Ags for stimulating CD8(+) T cells, these proteins represent novel candidates for therapeutic intervention of infection. In this study, we use C. trachomatis-specific murine T cells and an expression-cloning strategy to show that CT442 from Chlamydia is targeted by CD8(+) T cells. CT442, also known as CrpA, is a 15-kDa protein of undefined function that has previously been shown to be associated with the Chlamydia inclusion membrane. We show that: 1) CD8(+) T cells specific for an H-2D(b)-restricted epitope from CrpA are elicited at a significant level (approximately 4% of splenic CD8(+) T cells) in mice in response to infection; 2) the response to this epitope correlates with clearance of the organism from infected mice; and 3) immunization with recombinant vaccinia virus expressing CrpA elicits partial protective immunity to subsequent i.v. challenge with C. trachomatis. 相似文献
19.
Reduced display of tumor necrosis factor receptor I at the host cell surface supports infection with Chlamydia trachomatis 总被引:1,自引:0,他引:1
Paland N Böhme L Gurumurthy RK Mäurer A Szczepek AJ Rudel T 《The Journal of biological chemistry》2008,283(10):6438-6448
The obligate intracellular human pathogenic bacterium Chlamydia trachomatis has evolved multiple mechanisms to circumvent the host immune system. Infected cells exhibit a profound resistance to the induction of apoptosis and down-regulate the expression of major histocompatibility complex class I and class II molecules to evade the cytotoxic effect of effector immune cells. Here we demonstrate the down-regulation of tumor necrosis factor receptor 1 (TNFR1) on the surface of infected cells. Interestingly, other members of the TNFR family such as TNFR2 and CD95 (Fas/Apo-1) were not modulated during infection, suggesting a selective mechanism underlying surface reduction of TNFR1. The observed effect was not due to reduced expression since the overall amount of TNFR1 protein was increased in infected cells. TNFR1 accumulated at the chlamydial inclusion and was shed by the infected cell into the culture supernatant. Receptor shedding depended on the infection-induced activation of the MEK-ERK pathway and the metalloproteinase TACE (TNFalpha converting enzyme). Our results point to a new function of TNFR1 modulation by C. trachomatis in controlling inflammatory signals during infection. 相似文献
20.
Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralizing of pathogens by means of antibodies attaching to the pathogen's binding sites. Antibodies bind to and block ligand sites on the pathogen which prevents these sites from attaching to target cell receptors and so cell entry is inhibited. Many studies investigate the role of humoral immunity for protection against chlamydial challenge and they have shown that neutralization of the chlamydial body requires a large number of attached antibodies. Steric hindrance greatly influences the number of available sites that may be bound, reducing relative occupancy well below 100%. We model steric effects of antibody Fab fragment attachment indicating that they must be taken into consideration to accurately model valency, the number of available binding sites. We derive a partial differential equation for the number of antibody Fabs and host cell receptors that are aggregated to extracellular chlamydial elementary bodies. We consider steric effects in describing the size distribution of aggregates. Our theory is in good agreement with Monte Carlo simulations of binding. We use our theoretical prediction for the valency in a model for the in-host population dynamics of a chlamydial infection and we fit our model to experimental data. 相似文献