首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the fly visual system, each class of photoreceptor neurons (R cells) projects to a different synaptic layer in the brain. R1-R6 axons terminate in the lamina, while R7 and R8 axons pass through the lamina and stop in the medulla. As R cell axons enter the lamina, they encounter both glial cells and neurons. The cellular requirement for R1-R6 targeting was determined using loss-of-function mutations affecting different cell types in the lamina. nonstop (encoding a ubiquitin-specific protease) is required for glial cell development and hedgehog for neuronal development. Removal of glial cells but not neurons disrupts R1-R6 targeting. We propose that glial cells provide the initial stop signal promoting growth cone termination in the lamina. These findings uncover a novel function for neuron-glial interactions in regulating target specificity.  相似文献   

2.
The COP9 signalosome (CSN) is a complex of eight proteins first identified as a repressor of plant photomorphogenesis. A protein kinase activity associated with the COP9 signalosome has been reported but not identified; we present evidence for inositol 1,3,4-trisphosphate 5/6-kinase (5/6-kinase) as a protein kinase associated with the COP9 signalosome. We have shown that 5/6-kinase exists in a complex with the eight-component COP9 signalosome both when purified from bovine brain and when transfected into HEK 293 cells. 5/6-kinase phosphorylates the same substrates as those of the COP9 signalosome, including IkappaBalpha, p53, and c-Jun but fails to phosphorylate several other substrates, including c-Jun 1-79, which are not substrates for the COP9-associated kinase. Both the COP9 signalosome- associated kinase and 5/6-kinase are inhibited by curcumin. The association of 5/6-kinase with the COP9 signalosome is through an interaction with CSN1, which immunoprecipitates with 5/6-kinase. In addition, the inositol kinase activity of 5/6-kinase is inhibited when in a complex with CSN1. We propose that 5/6-kinase is the previously described COP9 signalosome-associated kinase.  相似文献   

3.
The COP9 signalosome is a highly conserved protein complex initially identified as a repressor of photomorphogenesis. Here, we report that subunit 6 of the Arabidopsis COP9 signalosome is encoded by a family of two genes (CSN6A and CSN6B) located on chromosomes V and IV, respectively. The CSN6A and CSN6B proteins share 87% amino acid identity and contain a MPR1p and PAD1p N-terminal (MPN) domain at the N-terminal region. The CSN6 proteins share homology with CSN5 and belong to the Mov34 superfamily of proteins. CSN6 proteins present only in the complex form and coimmunoprecipitate with other known subunits of the COP9 signalosome. Partial loss-of-function strains of the COP9 signalosome created by antisense and cosuppression with CSN6A exhibit diverse developmental defects, including homeotic organ transformation, symmetric body organization, and organ boundary definition. Protein blot analysis revealed that the defective plants accumulate significant amounts of ubiquitinated proteins, supporting the conclusion that the COP9 signalosome regulates multifaceted developmental processes through its involvement in ubiquitin/proteasome-mediated protein degradation.  相似文献   

4.
The Jun activating binding protein (JAB1) specifically stabilizes complexes of c-Jun or JunD with AP-1 sites, increasing the specificity of target gene activation by AP-1 proteins. JAB1 is also known as COP9 signalosome subunit 5 (CSN5), which is a component of the COP9 signalosome regulatory complex (CSN). Over the past year, JAB1/CSN5 has been implicated in numerous signaling pathways including those that regulate light signaling in plants, larval development in Drosophila, and integrin signaling, cell cycle control, and steroid hormone signaling in a number of systems. However, the general role of the CSN complex, and the specific role of JAB1/CSN5, still remain obscure. This review attempts to integrate the available data to help explain the role of JAB1/CSN5 and the COP9 signalosome in regulating multiple pathways (in this review, both JAB1 and CSN5 terminologies are used interchangeably, depending on the source material).  相似文献   

5.
6.
The COP9 signalosome (CSN) plays important roles in multifaceted cellular processes. Study has shown that inositol 1,3,4-trisphosphate 5/6 kinase (5/6 kinase) interacts with CSN in mammalian cells. However, the biological function of the interaction still remains unknown. Here, we report that the Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase (AtItpk-1) is also associated with CSN and involved in photomorphogenesis under red light (RL) conditions, as demonstrated by co-immunoprecipitation of AtItpk-1 with CSN and characterization of the atitpk-1 mutants. Expression analysis showed that AtItpk-1 had the same sub-cellular localization and organ expression pattern as CSN. Furthermore, autophosphorylation analysis showed that AtItpk-1 has protein kinase activity. Under RL, the atitpk-1 mutants exhibited phenotype slightly similar with that of the csn mutants, indicating that 5/6 kinase might be involved in the same developmental pathway as CSN. This study suggests that AtItpk-1 may function as a protein kinase that is involved in photomorphogenesis possibly via interaction with COP9 signalosome under red light.  相似文献   

7.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.Key words: ubiquitination, CSN, COP9 signalosome, Mdm2, p53, cancer, MPN domain, neddylation, Nedd8, cullin  相似文献   

8.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.  相似文献   

9.
The Arabidopsis COP9 signalosome is a multisubunit repressor of photomorphogenesis that is conserved among eukaryotes. This complex may have a general role in development. As a step in dissecting the biochemical mode of action of the COP9 signalosome, we determined the sequence of proteins that copurify with this complex. Here we describe the association between components of the COP9 signalosome (CSN1, CSN7, and CSN8) and two subunits of eukaryotic translation initiation factor 3 (eIF3), eIF3e (p48, known also as INT-6) and eIF3c (p105). To obtain a biochemical marker for Arabidopsis eIF3, we cloned the Arabidopsis ortholog of the eIF3 subunit eIF3b (PRT1). eIF3e coimmunoprecipitated with CSN7, and eIF3c coimmunoprecipitated with eIF3e, eIF3b, CSN8, and CSN1. eIF3e directly interacted with CSN7 and eIF3c. However, eIF3e and eIF3b cofractionated by gel filtration chromatography in a complex that was larger than the COP9 signalosome. Whereas eIF3, as detected through eIF3b, localized solely to the cytoplasm, eIF3e, like CSN7, was also found in the nucleus. This suggests that eIF3e and eIF3c are probably components of multiple complexes and that eIF3e and eIF3c associate with subunits of the COP9 signalosome, even though they are not components of the COP9 signalosome core complex. This interaction may allow for translational control by the COP9 signalosome.  相似文献   

10.
COP1 and COP9 signalosome (CSN) are key regulators of plant light responses and development. Deficiency in either COP1 or CSN causes a constitutive photomorphogenic phenotype. Through coordinated actions of nuclear- and cytoplasmic-localization signals, COP1 can respond to light signals by differentially partitions between nuclear and cytoplasmic compartments. Previous genetic analysis in Arabidopsis indicated that the nuclear localization of COP1 requires CSN, an eight-subunit heteromeric complex. However the mechanism underlying the functional relationship between COP1 and CSN is unknown. We report here that COP1 weakly associates with CSN in vivo . Furthermore, we report on the direct interaction involving the coiled-coil domain of COP1 and the N-terminal domain of the CSN1 subunit. In onion epidermal cells, expression of CSN1 can stimulate nuclear localization of GUS-COP1, and the N-terminal domain of CSN1 is necessary and sufficient for this function. Moreover, CSN1-induced COP1 nuclear localization requires the nuclear-localization sequences of COP1, as well as its coiled-coil domain, which contains both the cytoplasmic localization sequences and the CSN1 interacting domain. We also provide genetic evidence that the CSN1 N-terminal domain is specifically required for COP1 nuclear localization in Arabidopsis hypocotyl cells. This study advances our understanding of COP1 localization, and the molecular interactions between COP1 and CSN.  相似文献   

11.
The COP9 signalosome (CSN) is linked to signaling pathways and ubiquitin-dependent protein degradation in yeast, plant and mammalian cells, but its roles in Drosophila development are just beginning to be understood. We show that during oogenesis CSN5/JAB1, one subunit of the CSN, is required for meiotic progression and for establishment of both the AP and DV axes of the Drosophila oocyte. The EGFR ligand Gurken is essential for both axes, and our results show that CSN5 mutations block the accumulation of Gurken protein in the oocyte. CSN5 mutations also cause the modification of Vasa, which is known to be required for Gurken translation. This CSN5 phenotype - defective axis formation, reduced Gurken accumulation and modification of Vasa - is very similar to the phenotype of the spindle-class genes that are required for the repair of meiotic recombination-induced, DNA double-strand breaks. When these breaks are not repaired, a DNA damage checkpoint mediated by mei-41 is activated. Accordingly, the CSN5 phenotype is suppressed by mutations in mei-41 or by mutations in mei-W68, which is required for double strand break formation. These results suggest that, like the spindle-class genes, CSN5 regulates axis formation by checkpoint-dependent, translational control of Gurken. They also reveal a link between DNA repair, axis formation and the COP9 signalosome, a protein complex that acts in multiple signaling pathways by regulating protein stability.  相似文献   

12.
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27Kip1 stability, and that COP1 is a negative regulator of p27Kip1. Ectopic expression of CSN6 can decrease the expression of p27Kip1, while CSN6 knockdown leads to p27Kip1 stabilization. Mechanistic studies show that CSN6 interacts with p27Kip1 and facilitates ubiquitin-mediated degradation of p27Kip1. CSN6-mediated p27 degradation depends on the nuclear export of p27Kip1, which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.  相似文献   

13.
The COP9 signalosome (CSN) is a conserved eukaryotic protein complex implicated in the regulation of cullin-RING type E3 ubiquitin ligases by cleaving the small peptide RUB/Nedd8 from cullins. However, detailed analysis of CSN physiological functions in Arabidopsis has been hampered by the early seedling-lethality of csn null mutants. We and others have now identified a number of viable hypomorphic csn mutants which start to reveal novel CSN-dependent activities in adult Arabidopsis plants.1 Here, we present a detailed comparative analysis of the csn5a-1 and csn2-5 mutants as a mean to improve understanding of CSN functions in plant cells. Our observations point to CSN-independent activities of CSN5 and suggest a role of the CSN in cytoskeleton assembly/organization.Key words: Arabidopsis, root skewing, CSN, COP9 signalosome, SCF, ubiquitin, TIR1, auxin  相似文献   

14.
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit 1 (CSN1 or GPS1) of the COP9 signalosome relative to the complex. We demonstrated that the C-terminal half of CSN1 encompassing the PCI domain is responsible for interaction with CSN2, CSN3, and CSN4 subunits and is required for incorporation of the subunit into the complex. The N-terminal fragment of CSN1 cannot stably associate with the complex but can translocate to the nucleus on its own. We further show that CSN1 or the N-terminal fragment of CSN1 (CSN1-N) can inhibit c-fos expression from either a transfected template or a chromosomal transgene ( fos-lacZ). Moreover, CSN1 as well as CSN1-N can potently suppress signal activation of a AP-1 promoter and moderately suppress serum activation of a SRE promoter, but is unable to inhibit PKA-induced CRE promoter activity. We conclude that the N-terminal half of CSN1 harbors the activity domain that confers most of the repression functions of CSN1 while the C-terminal half allows integration of the protein into the COP9 signalosome.  相似文献   

15.
目的构建新生隐球菌COP9复合体蛋白元件Csn6的基因同源重组敲除框,并通过基因枪转化系统敲除CSN6基因。方法应用生物信息学方法获得COP9复合体蛋白元件的基因信息,采用套叠PCR的方法,构建包含报告基因NEO和CSN6基因ORF两侧上下游同源DNA片段的同源重组框。应用基因枪将其转化入新生隐球菌感受态细胞,通过PCR和DNA测序对遗传霉素(G418)耐受的阳性克隆子进行筛选与验证。结果成功构建了新生隐球菌基因突变株csn6裣。结论 COP9复合体亚基CSN6基因突变株的构建,为今后新生隐球菌COP9复合体的分子致病机制研究奠定基础。  相似文献   

16.
The fifth component of the COP9 signalosome complex, Jab1/CSN5, directly binds to and induces specific down-regulation of the cyclin-dependent kinase inhibitor p27 (p27(Kip1)). Nuclear-cytoplasmic translocation plays an important role because leptomycin B (LMB), a chemical inhibitor of CRM1-dependent nuclear export, prevents p27 degradation mediated by Jab1/CSN5. Here we show that Jab1/CSN5 functions as an adaptor between p27 and CRM1 to induce nuclear export and subsequent degradation. Jab1/CSN5, but not p27, contains a typical leucine-rich nuclear export signal (NES) sequence conserved among different species, through which CRM1 bound to Jab1/CSN5 in an LMB-sensitive manner. Alteration of conserved leucine residues to alanine within Jab1/CSN5-NES abolished the interaction with CRM1 in vitro and impaired LMB-sensitive nuclear export and the ability to induce p27 breakdown in cultured cells. A Jab1/CSN5 truncation mutant lacking NES reversed p27 down-regulation induced by the full-length Jab1/CSN5, indicating that this mutant functions as a dominant negative (DN-Jab1). Introduction of DN-Jab1 into proliferating fibroblasts increased the level of p27 protein, thereby inducing growth arrest of the cells. Random mutagenesis analysis revealed that specific aspartic acid, leucine, and asparagine residues contained in the Jab1/CSN5-binding domain of p27 were required for interaction with Jab1/CSN5 and for down-regulation of p27. Glycerol gradient and cell fractionation experiments showed that at least two different forms of Jab1/CSN5-containing complexes existed within the cell. One is the conventional 450-kDa COP9 signalosome (CSN) complex located in the nucleus, and the other is much smaller (around 100-kDa), containing only a subset of CSN components (CSN4-8 but not CSN1-3), and mainly located in the cytoplasm. Treatment of cells with LMB greatly reduced the level of the smaller complex, suggesting that it originated from the CSN complex by nuclear export. Besides Jab1/CSN5, CSN3, -6, -7, and -8 were capable of inducing p27 down-regulation, when ectopically expressed. These results indicate that cytoplasmic shuttling regulated by Jab1/CSN5 and other CSN components may be a new pathway to control the intracellular abundance of the key cell cycle regulator.  相似文献   

17.
The Carma1–Bcl10–Malt1 (CBM) complex connects T‐cell receptor (TCR) signalling to the canonical IκB kinase (IKK)/NF (nuclear factor)‐κB pathway. Earlier studies have indicated that the COP9 signalosome (CSN), a pleiotropic regulator of the ubiquitin/26S proteasome system, controls antigen responses in T cells. The CSN is required for the degradation of the NF‐κB inhibitor IκBα, but other molecular targets involved in T‐cell signalling remained elusive. Here, we identify the CSN subunit 5 (CSN5) as a new interactor of Malt1 and Carma1. T‐cell activation triggers the recruitment of the CSN to the CBM complex, and CSN downregulation impairs TCR‐induced IKK activation. Furthermore, the CSN is required for maintaining the stability of Bcl10 in response to T‐cell activation. Taken together, our data provide evidence for a functional link between the evolutionarily conserved CSN and the adaptive immunoregulatory CBM complex in T cells.  相似文献   

18.
The COP9 signalosome is a highly conserved eight-subunit protein complex initially defined as a repressor of photomorphogenic development in Arabidopsis. It has recently been suggested that the COP9 signalosome directly interacts and regulates SCF type E3 ligases, implying a key role in ubiquitin-proteasome mediated protein degradation. We report that Arabidopsis FUS11 gene encodes the subunit 3 of the COP9 signalosome (CSN3). The fus11 mutant is defective in the COP9 signalosome and accumulates significant amount of multi-ubiquitinated proteins. The same mutant is specifically impaired in the 26S proteasome-mediated degradation of HY5 but not PHYA, indicating a selective involvement in protein degradation. Reduction-of-function transgenic lines of CSN3 produced through gene co-suppression also accumulate multi-ubiquitinated proteins and exhibit diverse developmental defects. This result substantiates a hypothesis that the COP9 signalosome is involved in multifaceted developmental processes through regulating proteasome-mediated protein degradation.  相似文献   

19.
As a critical subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), CSN6 is upregulated in some human cancers and plays critical roles in tumorigenesis and progression, but its biological functions and molecular mechanisms in melanoma remain unknown. Our study showed that CSN6 expression was upregulated in melanoma patients and cells, and correlated with poor survival in melanoma patients. In melanoma cells, CSN6 knockdown remarkably inhibited cell proliferation, tumorigenicity, migration, and invasion, whereas CSN6 recovery rescued the proliferative and metastatic abilities. Notably, we identified that CSN6 stabilized CDK9 expression by reducing CDK9 ubiquitination levels, thereby activating CDK9-mediated signaling pathways. In addition, our study described a novel CSN6-interacting E3 ligase UBR5, which was negatively regulated by CSN6 and could regulate the ubiquitination and degradation of CDK9 in melanoma cells. Furthermore, in CSN6-knockdown melanoma cells, UBR5 knockdown abrogated the effects caused by CSN6 silencing, suggesting that CSN6 activates the UBR5/CDK9 pathway to promote melanoma cell proliferation and metastasis. Thus, this study illustrates the mechanism by which the CSN6-UBR5-CDK9 axis promotes melanoma development, and demonstrate that CSN6 may be a potential biomarker and anticancer target in melanoma.Subject terms: Targeted therapies, Oncogenes, Melanoma, Target identification, Skin stem cells  相似文献   

20.
Lier S  Paululat A 《Gene》2002,298(2):109-119
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号