首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 57 different microsatellite variants have been typed in one or more of five different sets of recombinant inbred (RI) mouse strains. The present report concentrates on markers for Chromosomes (Chrs) 10, 16, 18, 19 and X. These markers extend the regions swept in these RI strains, provide reference markers for integrating RI and conventional maps, and provide additional estimates of genetic distances. Multilocus maps, based on maximum likelihood analysis of present and previously published RI SDPs on five chromosomes, are presented. Unexpectedly, three microsatellite markers, previously assigned to Chr 10, detected polymorphic fragments mapping to other chromosomes.  相似文献   

2.
A mouse 7S RNA cDNA plasmid clone was employed to identify and map DNA restriction fragment variants using recombinant inbred (RI) and congenic mouse strains. More than a dozen such restriction variants were identified and mapped to different regions of the mouse genome. One such variant, designated Rn7s-6, showed close linkage to the Ly-2,3-Igk-V (T lymphocyte antigens 2 and 3, kappa immunoglobulin variable region) cluster of markers on chromosome 6. No recombinants were detected among three of these markers in 59 RI strains. On the basis of these data, the Rn7s-6 sequence may be placed within 1.3 centimorgans of Ly-3 and one of the Igk-V-region markers, Igk-Efl. Two mouse stocks with previously identified crossovers within the Ly2,3-Igk-V region were used to sublocalize Rn7s-6. The results are consistent with the gene order (Ly-2, Ly-3)-(Rn7s-6, Igk-Efl)-Igk-Ef2. Several mouse plasmacytomas, known to have various parts of the kappa chain complex deleted, retain the Rn7s-6 sequence. The Rn7s-6 variant is a plus/minus variant; no sequence allelic to Rn7s-6 is found in inbred strains that share the Ly-3 a-Igk-Efla haplotype.  相似文献   

3.
Chromosomal DNA in 5 hereditary variants occurring in Photobacterium leiognathi population was subjected to restriction analysis. The variants differed in the levels and regulation of luminescence and colony morphology. Agarose electrophoresis of DNA fragments isolated after exposure to Hind II, Bam HI, Bgl I and Pst I restriction endonucleases revealed respectively 38, 28, 35 and 29 fragments equally distributed by their molecular weights. Electrophoregrams of the 5 strains were absolutely identical. After exposure of DNA of all the strains to PVu II, Xho II, Sal GI and Eco RI restriction endonucleases there were detected no fragments. The pleoiotropic genetic variation in these strains was not associated with large deletions or amplification of chromosomal DNA regions.  相似文献   

4.
Recombinant inbred (RI) strains are a valuable tool in mouse genetics to rapidly map the location of a new locus. Because RI strains have been typed for hundreds of genetic markers, the genotypes of individual strains within an RI set can be examined to identify specific strain(s) containing the desired region(s) of interest (e.g., one or more quantitative trait loci, QTLs) for subsequent phenotype testing. Specific RI strains might also be identified for use as progenitors in the construction of consomic (chromosome substitution strains or CSSs) or congenic lines or for use in the RI strain test (RIST). To quickly identify the genetic contributions of the parental A/J (A) and C57BL/6J (B) strains, we have generated chromosome maps for each commercially available AXB and BXA RI strain, in which the genetic loci are colorcoded to signify the parent of origin. To further assist in strain selection for further breeding schemes, the percentages of A and B parental contributions were calculated, based on the total number of typed markers in the database for each strain. With these data, one can rapidly select the RI strain(s) carrying the desired donor and recipient strain region(s). Because points of recombination are known, starting with RI mice to generate CSSs or congenic lines immediately reduces genomewide screening to those donor-strain regions not already homozygous in the recipient strain. Two examples are presented to demonstrate potential uses of the generated chromosome maps: to select RI strains to construct congenic lines and to perform an RIST forAliq1, a QTL linked to ozone-induced acute lung injury survival.  相似文献   

5.

Background

Recombinant inbred (RI) strains of mice are an important resource used to map and analyze complex traits. They have proved particularly effective in multidisciplinary genetic studies. Widespread use of RI strains has been hampered by their modest numbers and by the difficulty of combining results derived from different RI sets.

Results

We have increased the density of typed microsatellite markers 2- to 5-fold in each of several major RI sets that share C57BL/6 as a parental strain (AXB, BXA, BXD, BXH, and CXB). A common set of 490 markers was genotyped in just over 100 RI strains. Genotypes of another ~1100 microsatellites were generated, collected, and error checked in one or more RI sets. Consensus RI maps that integrate genotypes of ~1600 microsatellite loci were assembled. The genomes of individual strains typically incorporate 45-55 recombination breakpoints. The collected RI set - termed the BXN set - contains approximately 5000 breakpoints. The distribution of recombinations approximates a Poisson distribution and distances between breakpoints average about 0.5 cM. Locations of most breakpoints have been defined with a precision of < 2 cM. Genotypes deviate from Hardy-Weinberg equilibrium in only a small number of intervals.

Conclusions

Consensus maps derived from RI strains conform almost precisely with theoretical expectation and are close to the length predicted by the Haldane-Waddington equation (X3.6 for a 2-3 cM interval between markers). Non-syntenic associations among different chromosomes introduce predictable distortions in QTL data sets that can be partly corrected using two-locus correlation matrices.  相似文献   

6.
The aim of this study was to map chromosomal regions containing hypothetical genes responsible for the following parameters of mouse semen quality: (1) the percentage of sperm with abnormal head morphology, (2) the level of dead spermatozoa, (3) the percentage of sperm tails with residual cytoplasmic droplets, and (4) the percentage of sperm with impaired sperm tail membrane integrity. We also analyzed any possible correlations between these parameters. The most appropriate animal model for mapping genes controlling quantitative traits (QTL, quantitative trait locus) is a set of recombinant inbred (RI) strains. The set of RI strains used in this study was derived from crosses between two inbred mouse strains, KE and CBA/Kw, which differ significantly in fertility parameters and gamete quality. We analyzed the four parameters of sperm quality in male mice from two parental strains and from 12 RI strains. The strain distribution pattern (SDP) of 187 polymorphic microsatellite markers was prepared for 20 chromosomes of the mouse genome in 12 RI strains. We correlated the SDP of these markers with the values of sperm quality parameters, using MapManager QTX software (ver. b18). The mapping procedure indicated that the percentage of sperm with abnormal head morphology is controlled by gene(s) located in chromosomal regions 11q24, 11q31 and 6q15.6. There was also a strong correlation between male body weight and the hypothetical gene(s) in chromosomal region 18q47. A detailed analysis of the genes located in these regions enabled us to prepare a list of candidate genes. We discuss the basis of the correlation between the measured parameters.  相似文献   

7.
Microsatellite sequences, such as dinucleotide repeats, show a high degree of polymorphism in eukaryotic DNA. These sequences are convenient as genetic markers and can be analyzed by the polymerase chain reaction (PCR). We have assessed the frequency of length variants in 18 mononucleotide repeats in mouse DNA and find that the variability is similar to that reported for dinucleotide repeats. Nine of the 18 repeat sequences (50%) have three or more alleles in the strains tested. Ten of these repeat sequences have been mapped using strain distribution patterns (SDPs) in recombinant inbred (RI) strains.  相似文献   

8.
We exploited the AFLP technique to saturate a RFLP linkage map derived from a maize mapping population. By using two restriction enzyme, EcoRI and PstI, differing in methylation sensitivity, both in combination with MseI, we detected 1568 bands of which 340 where polymorphic. These were added to the exitsing RFLP marker data to study the effects of incorporation of AFLPs produced by different restriction-enzyme combinations upon genetic maps. Addition of the AFLP data resulted in greater genome coverage, both through linking previously separate groups and the extension of other groups. The increase of the total map length was mainly caused by the addition of markers to telomeric regions, where RFLP markers were poorly represented. The percentage of informative loci was significantly different between the EcoRI and PstI assays. There was also evidence that PstI AFLP markers were more randomly distributed across chromosomes and chromosome regions, while EcoRI AFLP markers clustered mainly at centomeric regions. The more-random ditsribution of PstI AFLP markers on the genetic map reported here may reflect a preferential localisation of the markers in the hypomethylated telomeric regions of the chromosomes. Received: 22 December 1998 / Accepted: 25 March 1999  相似文献   

9.
Genetic analysis of metabolic defects in the spontaneously hypertensive rat   总被引:1,自引:0,他引:1  
Abnormalities in carbohydrate and lipid metabolism are common in patients with essential hypertension and in the spontaneously hypertensive rat (SHR). To identify chromosome regions contributing to this clustering of cardiovascular risk factors in the SHR, we searched for quantitative trait loci (QTL) associated with insulin resistance, glucose intolerance, and dyslipidemia by using the HXB/BXH recombinant inbred (RI) strains. Analysis of variance in RI strains suggested significant effects of genetic factors. A genome screening of the RI strains with more than 700 markers revealed QTL significantly associated with insulin resistance on Chromosomes (Chrs) 3 and 19. The Chr 19 QTL was confirmed by testing a previously derived SHR-19 congenic strain: transfer of a Chr 19 segment delineated by markers D19Rat57 and D19Mit7 from the Brown Norway (BN/Cr) strain onto the genetic background of the SHR/Ola was associated with decreased insulin and glucose concentrations and ameliorated insulin resistance at the tissue level. These findings suggest that closely linked genes on Chr 19, or perhaps even a single gene with pleiotropic effects, influence the clustering of metabolic disturbances in the SHR-BN model.  相似文献   

10.
The AXB and BXA set of recombinant inbred mouse strains   总被引:1,自引:1,他引:0  
The recombinant inbred (RI) set of strains, AXB and BXA, derived from C57BL/6J and A/J, originally constructed and maintained at the University of California/San Diego, have been imported into The Jackson Laboratory and are now in the 29th to 59th generation of brother-sister matings. Genetic quality control testing with 45 proviral and 11 biochemical markers previously typed in this RI set indicated that five strains had been genetically contaminated sometime in the past, so these strains have been discarded. The correct and complete strain distribution patterns for 56 genetic markers are reported for the remaining RI strain set, which consists of 31 living strains and 8 extinct strains for which DNA is available. Two additional strains, AXB 12 and BXA 17, are living and may be added to the set pending further tests of genetic purity. The progenitors of this RI set differ in susceptibility to 27 infectious diseases as well as atherosclerosis, obesity, diabetes, cancer, cleft palate, and hydrocephalus. Thus, the AXB and BXA set of RI strains will be useful in the genetic analysis of several complex diseases.  相似文献   

11.
A new contiguous genetic linkage map of the HXB/BXH set of rat recombinant inbred (RI) strains was constructed to enhance QTL mapping power and precision, and thereby make the RI strain set a better genomics resource. The HXB/BXH rat RI strains were developed from a cross between the hypertensive SHR/OlaIpcv and normotensive BN-Lx/Cub rat strains and have been shown useful for identifying quantitative trait loci (QTL) for a variety of cardiovascular, metabolic, and behavioral phenotypes. In the current analysis, the DNAs from 31 existing strains, 1 substrain, and 4 extinct strains were genotyped for a selection of polymorphic microsatellite marker loci, predominantly polymorphic framework markers from high-density integrated rat genome maps. The resulting linkage map consists of 245 microsatellite markers spanning a total length of 1789 cM with an average inter-marker distance of ~8.0 cM. This map covers the rat genome contiguously and completely with the exception of two locations on Chromosomes (Chrs) 11 and 16. The new genotypic information obtained also permitted further genetic characterization of the RI strain set including strain independence, genetic similarity among the individual strains, and non-syntenic associations between loci.  相似文献   

12.
Recombinant inbred (RI) mouse strains were developed from reciprocal crosses between two inbred strains differing in the proportion of fertilized ova (CBA, 100%; KE, 77%), to analyse the underlying factors. A correlation (r = 0.83, P < 0.01) between fertilization efficiency within 22 RI strains and after mating RI females with KE males proved that oocyte quality was involved. The following oocyte parameters were analysed in RI and progenitor strains: time of meiotic maturation, rapidity of enzymatic removal of egg investments, and proportion of fertilized ova with supplementary spermatozoa in the perivitelline space. Among the RI strains, high incidence of supplementary spermatozoa was correlated with lower efficiency of fertilization (r = -0.58, P < 0.05) and with slow meiotic maturation (r = -64, P < 0.01), suggesting that delayed maturation may affect oocyte ability of being fertilized by the first penetrating spermatozoon. However, significant correlations were also found between characters which coexist within the progenitor strains, but are not likely to be physiologically related; this suggests that RI strains have inherited large blocks of progenitor genomes, not disrupted by recombination. The strain distribution pattern (SDP) of the analysed traits revealed CBA-like, KE-like, and intermediate phenotypes, indicating that they are polygenically determined. No linkages were found between the studied traits and 12 enzymatic markers. However, the SDP for fertilization efficiency showed a preponderance of non-matching strains (15/19) in relation to agouti locus; the known instability of this chromosome region makes it possible that a putative linkage was disrupted by recombination when RI strains were created.  相似文献   

13.
Recombinant inbred (RI) strains are formed from an outcross between two well-characterized inbred stains followed by at least 20 generations of inbreeding. RI strains can be utilized for the analysis of many complex phenotypic traits. The LEXF/FXLE RI strain set consists of 34 RI strains derived by reciprocal crossing of LE/Stm and F344/Stm. Here we report on genetic dissections of complex traits using this RI set and their parental strains. We have developed strain distribution patterns for 232 informative simple sequence length polymorphism markers. The framework map covers the rat genome except for chromosome Y. Seventy-six phenotype parameters, which included physiological and behavioral traits, were examined for these RI lines. Quantitative trait locus (QTL) analysis of these parameters revealed 27 significant and 91 suggestive QTLs, illustrating the potential of this RI resource for the detection of underlying gene functions for various phenotypes. Although this RI set was originally developed to study susceptibility to chemical-induced tumors, it has been shown to be equally powerful for a wide spectrum of traits. The LEXF/FXLE RI strains have been deposited at the National Bio Resource Project for the Rat in Japan and are maintained under specific pathogen-free conditions. They are available at http://www.anim.med.kyoto-u.ac.jp/nbr.  相似文献   

14.
The AFLP technique is a new DNA marker technology based on the selective amplification of restriction fragments. Multiple polymorphic markers are simultaneously produced and can be tested in one PCR. No prior information on genomic DNA sequences is needed. In the current study, we contribute 18 AFLP markers to the linkage map of the rat. Seven AFLP markers were assigned to specific chromosomes by analysis of a (BN × ACI)F1 × ACI backcross progeny. Another 11 AFLP markers were mapped by using a panel of the H × B/B × H recombinant inbred (RI) strains. Genotypes of these AFLP markers were also tested for correlations with some blood pressure phenotypes in the RI strains. Suggestive correlation was found between the mean arterial pressure and two closely linked AFLP markers located on chromosome 20. The current study illustrates the value of AFLP markers for the construction of linkage maps and the detection of quantitative trait loci.  相似文献   

15.
The serological variants of a number of Y. enterocolitica strains isolated in different regions of the USSR (1,085 strains isolated from humans and animals in the North-West of the RSFSR, 76 strains isolated from humans and animals in the Krasnodar Territory and 114 strains isolated from humans only in the area east of Lake Baikal) were determined. 25 serological variants were registered in these 3 regions of the USSR. The cultures isolated from rodents belonged mostly to serovars 06,30; 03; 05; 04,33; 019,8; 016; and from humans, to serovars 03; 05; 07,8; 016; 06,30; 09.  相似文献   

16.
We are mapping quantitative trait loci (QTLs) that influence ethanol-induced anesthesia (sleep time) in the Long-sleep (LS) and Short-sleep (SS) slected lines of mice. Fifty microsatellite-STS markers were initially screened for simple-sequence length polymorphisms between the LS and SS lines. Nineteen markers were polymorphic. Eleven markers unequivocally differentiated the LS and SS lines and were used to establish strain distribution patterns for the LSXSS series of recombinant inbred strains. Five markers each accounted for at least 5% of sleep-time genetic variance among the RI strains. Linkage of provisional QTLs detected among RIs will be confirmed or disproved in a large F2 population. This ongoing QTL-mapping project eventually will result in a strain distribution pattern for the LSXSS RI series with an average marker spacing of 5 centimorgans.  相似文献   

17.
Localization of the cryptdin locus on mouse chromosome 8   总被引:4,自引:0,他引:4  
Cryptdin is a defensin-related peptide, and its mRNA accumulates to high abundance in epithelial cells of intestinal crypts beginning in the second week of postnatal development. The cryptdin (Defcr) locus was assigned to mouse chromosome 8 by Southern blotting of DNAs from mouse/hamster somatic hybrid cell lines. Analysis of somatic hybrid DNAs for mouse-specific restriction fragments showed zero discordance and perfect concordance with chromosome 8. The Defcr locus was localized on chromosome 8 by analysis of DNAs from recombinant inbred (RI) strains of mice after identification of three potential Defcr alleles based on restriction fragment length polymorphisms (RFLPs) in inbred strains. The strain distribution patterns of the Defcr locus were compared with those of chromosome 8 markers in five panels of RI strains. Analysis of cosegregation of Defcr with xenotropic proviral locus Xmv-26 and additional loci confirmed the chromosomal assignment and showed that Defcr is on proximal chromosome 8 within approximately 6 (1.3 to 21.3) cM of Xmv-26. The mouse Defcr locus and the human defensin gene(s) located on chromosome 8p23 appear to map to homologous regions.  相似文献   

18.
We characterized 84 endogenous nonecotropic proviruses of NZB/B1NJ and SM/J inbred strains by examining proviral junction fragment segregation in recombinant inbred (RI) and backcross mice. Forty-five proviruses were shared with other laboratory strains, but 28 were unique to NZB/BINJ or SM/J. Proviral loci were located on 17 of the 19 mouse autosomes and on both sex chromosomes. These markers will facilitate gene mapping in the NXSM RI set and contribute to the pursuit of a more complete map of the mouse genome.  相似文献   

19.
20.
Polymorphism of the chromosome staphylococcus cassette mec (SCCmec), a mobile and heterological genetic element providing resistance to beta-lactam antibiotics was studied in methycillin-resistant strains of Staphylococcus aureus (MRSA) isolated at permanent stations situated in different regions of Russia. Type SCCmec was identified using the PCR method by determining allotypes of 3 different structural genetic complexes incorporated in the cassettes mec. It was found that the isolates studied in this work contained 3 different types of SCCmec: I, III, and IVb. Both isolates containing 2 different copies of SCCmec and isolates containing defective copies of SCCmec were identified. It was demonstrated that determination of the SCC-mec type provided an opportunity to differentiate the isolates studied in this work from one another. The isolates attributed to the same genotype variant (identified by polymorphism of coagulase gene) but isolated at different hospitals located in different regions of Russia were found to contain the same type of the chromosome staphylococcus cassette mec, whereas the isolates of different coagulase groups (i.e., different genotype variants) contained different types of SCCmec. It was found that at least 2 epidemic strains circulated in the permanent hospitals of Russia. The strains differ from one another by the polymorphism of the coagulase gene and the mec DNA polymorphism. According to results of studies of several molecular markers (including mec DNA), these strains proved to be identical to the international strains EMRSA-1 and EMRSA-2. Possible mechanisms of MRSA formation and circulation in Russia and CIS countries are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号