首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to quantify the interactions between dopaminergic and cholinergic processes, the consequences of complete or partial activation (with N-n-propylnorapomorphine) or blockade (with spiperone) of dopamine receptors for the acetylcholine levels in the rat striatum were studied. The number of specific striatal binding sites (receptors) of spiperone was nearly three times that of N-n-propylnorapomorphine (76 and 26 pmol g-1 wet weight, respectively). The agonist produced a significant increase in the striatal levels of acetylcholine, but there was no simple relationship between receptor binding and these levels. A linear negative correlation was found between the striatal levels of acetylcholine and specific spiperone binding, showing that further receptor blockade induces a decrease in acetylcholine levels, which is independent of the receptors already occupied by the antagonist. The results of this study are evidence that one striatal dopamine receptor regulates the metabolism of at least 400 molecules of acetylcholine.  相似文献   

2.
3.
M Metsis  T Timmusk  R Allikmets  M Saarma  H Persson 《Gene》1992,121(2):247-254
The low-affinity nerve growth factor receptor (LNGFR) is a membrane-associated glycoprotein which is thought to participate in some of the biological activities of nerve growth factor (NGF). Expression of the LNGFR gene is known to be regulated both during development and in response to various agents in cell culture. However, molecular mechanisms responsible for the regulation have not been described. We report here an analysis of a 4.8-kb sequence from the 5'-flanking region of the rat LNGFR gene. Several regulatory elements were identified in this region by transfection of plasmid constructs containing sequences from LNGFR fused to a bacterial cat reporter gene. The proximal part of the promoter region (0.4-kb) was shown to be sufficient to support cat expression in all cell types used. A silencer element located between -1.5 kb and -1.8 kb from the start of translation, as well as an enhancer element in more upstream regions of the promoter, were identified in the phaeochromocytoma cell line, PC12, and in the Sertoli cell line, TM4, that express the LNGFR gene. Treatment of TM4 cells with retinoic acid (RA) increases the level of LNGFR mRNA twofold, while testosterone treatment results in a tenfold decrease. Regions of the promoter responsive to testosterone and RA in TM4 cells were found at -610 to -860 bp and -1840 to -4800 bp upstream from the translation start codon, respectively. A RA-responsive element active in PC12 cells is located between bp -610 to -860 from the start codon.  相似文献   

4.
5.
When treating head and neck for cancer with the use of radiotherapy the salivary glands are usually within the treatment volume with ensuing dryness and discomfort. Since the autonomic nervous system is of pivotal importance for the salivary gland function and integrity, the irradiation-induced effects may involve an influence on the innervation of salivary glands. Therefore, the rat submandibular gland, including the submandibular ganglionic cells, has been subjected to immunohistochemical examination with respect to expression of neuropeptides following fractionated irradiation with high energy photons. A markedly enhanced expression of bombesin- and leu-enkephalin-(ENK)-like immunoreactivities (LI) in the ganglionic cells and a pronounced increase in the number of nerve fibers showing these immunoreactivities in the submandibular gland tissue following irradiation were observed 10 days after treatment. On the other hand, no changes in the patterns of VIP (vasoactive intestinal polypeptide)- and NPY (neuropeptide Y)-immunoreactivities occurred. Thus, the present study shows that alterations in the expression of certain neuropeptides take place in the submandibular gland and its associated ganglionic cells in response to irradiation of the head and neck region. These changes may add further explanation to the inherent radiosensitivity of salivary glands.  相似文献   

6.
7.
In prior studies, nerve growth factor (NGF) administration induced a robust, selective increase in the neurochemical differentiation of caudate-putamen cholinergic neurons. In this study, expression of NGF and its receptor was examined to determine whether endogenous NGF might serve as a neurotrophic factor for these neurons. The temporal pattern of NGF gene expression and the levels of NGF mRNA and protein were distinct from those found in other brain regions. NGF and high-affinity NGF binding were present during cholinergic neurochemical differentiation and persisted into adult-hood. An increase in NGF binding during the third postnatal week was correlated with increasing choline acetyltransferase activity. The data are consistent with a role for endogenous NGF in the development and, possibly, the maintenance of caudate-putamen cholinergic neurons.  相似文献   

8.
1. In situ hybridization histochemistry was used to localize nerve growth factor receptor (NGFR) mRNA in the adult rat basal forebrain. 2. In emulsion-dipped sections 35S-labeled RNA antisense probes produced a high density of silver grains over cells located in the medial septum, vertical and horizontal limbs of the diagonal band of Broca, and nucleus basalis. 3. This distribution of NGFR mRNA overlaps with the distribution of NGFR protein localized using immunocytochemical techniques. 4. No hybridization signal was detected when sections were hybridized with a 35S-labeled RNA sense (control) probe. 5. We suggest that NGFRs are synthesized in these basal forebrain nuclei and transported to terminal areas where NGF is thought to be bound and internalized, an initial step in the many actions of this neurotrophic factor.  相似文献   

9.
To ascertain whether the PTEN (phosphatase and tensin homolog deleted on chromosome 10)/Akt signaling pathway is activated during ischemic brain injury, we investigated the expression and phosphorylation of PTEN and Akt by immunohistochemistry in the rat hippocampus after transient forebrain ischemia. Weak immunoreactivity for PTEN and its phosphorylated form (p-PTEN) was constitutively expressed in hippocampal neurons and astrocytes of the control rats, but their upregulation was detected mainly in reactive astrocytes in the ischemic hippocampus. Increased immunoreactivity for PTEN and p-PTEN occurred specifically in astrocytes by day 1 and was sustained for more than 2 weeks. The spatiotemporal activation of Akt in the ischemic hippocampus mirrored that of p-PTEN expression. Post-ischemic activation of Akt, revealed by phosphorylated Akt (p-Akt) immunoreactivity, was first detected at day 1 and was maintained for at least 2 weeks. Double-labeling experiments revealed that the cells expressing PTEN, p-PTEN, or p-Akt were reactive astrocytes expressing glial fibrillary acidic protein. These results demonstrate the increased phosphorylation of PTEN and Akt in reactive astrocytes of the post-ischemic hippocampus, suggesting that the PTEN/Akt pathway is involved in the astroglial reaction in the rat hippocampus after transient forebrain ischemia.This research was supported by Korea Science and Engineering Foundation (R01-2002-000-00334-0(2002)).  相似文献   

10.
11.
12.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in macrophages where they control cholesterol homeostasis and inflammation. In an attempt to identify new PPARalpha and PPARgamma target genes in macrophages, a DNA array-based global gene expression profiling experiment was performed on human primary macrophages treated with specific PPARalpha and PPARgamma agonists. Surprisingly, AdipoR2, one of the two recently identified receptors for adiponectin, an adipocyte-specific secreted hormone with anti-diabetic and anti-atherogenic activities, was found to be induced by both PPARalpha and PPARgamma. AdipoR2 induction by PPARalpha and PPARgamma in primary and THP-1 macrophages was confirmed by Q-PCR analysis. Interestingly, treatment with a synthetic LXR agonist induced the expression of both AdipoR1 and AdipoR2. Furthermore, co-incubation with a PPARalpha ligand and adiponectin resulted in an additive effect on the reduction of macrophage cholesteryl ester content. Finally, AdipoR1 and AdipoR2 are both present in human atherosclerotic lesions. Moreover, AdipoR1 is more abundant than AdipoR2 in monocytes and its expression decreases upon differentiation into macrophages, whereas AdipoR2 remains constant. In conclusion, AdipoR1 and AdipoR2 are expressed in human atherosclerotic lesions and macrophages and can be modulated by PPAR and LXR ligands, thus identifying a mechanism of crosstalk between adiponectin and these nuclear receptor signaling pathways.  相似文献   

13.
The transition from adolescence to adulthood is accompanied by substantial plastic modifications in the cerebral cortex, including changes in the growth and retraction of neuronal processes and in the rate of synaptic formation and neuronal loss. Some of these plastic changes are prevented in female rats by prepubertal ovariectomy. The ovarian hormone estradiol modulates neuronal differentiation and survival and these effects are in part mediated by the interaction with insulin-like growth factor-I (IGF-I). In this study, we have explored whether the activation by estradiol of some components of IGF-I receptor signaling is altered in the prefrontal cortex during puberty. Estradiol administration to rats ovariectomized after puberty resulted, 24 h after the hormonal administration, in a sustained phosphorylation of Akt and glycogen synthase kinase 3 beta in the prefrontal cortex. However, this hormonal effect was not observed in animals ovariectomized before puberty. These findings suggest that during pubertal maturation there is a programming by ovarian hormones of the future regulatory actions of estradiol on IGF-I receptor signaling in the prefrontal cortex. The modification in the regulation of IGF-I receptor signaling by estradiol during pubertal maturation may have implications for the developmental changes occurring in the prefrontal cortex in the transition from adolescence to adulthood.  相似文献   

14.
15.
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata.  相似文献   

16.
17.
The dopamine (DA) pathway mediates numerous neuronal functions which are implicated in psychiatric disorders. Previously, our lab investigated the status of the dopamine transporter in the Wistar-Kyoto rat, a purported rodent model of depressive behavior, and reported significant alterations in transporter binding sites in several brain regions when compared to control rat strains. Given that DA-2 and DA-3 receptors belong to the same class of DA receptors, are co-localized in the mesolimbic and nigrostriatal regions of the brain and function as autoreceptors, this study mapped the distribution of central DA-2 and DA-3 receptors in Wistar-Kyoto and Wistar rats. The results indicated that while the binding of 125I-sulpride to DA-2 receptors was higher in the nucleus accumbens (shell) and ventral tegmental area, it was lower in the nucleus accumbens (core), caudate putamen and hypothalamus in Wistar-Kyoto compared to Wistar rats. In contrast, the binding of 125I-sulpride to DA-3 receptors was higher in the caudate putamen, nucleus accumbens (shell and core) and islands of Calleja in Wistar-Kyoto compared to Wistar rats. Given that DA-2 like receptors in the ventral tegmental area function as autoreceptors, it is possible that the greater inhibitory effects exerted by DA-2 and DA-3 receptors in Wistar-Kyoto rats may lead to a net deficit in DA levels in areas receiving projection from this cell body area.  相似文献   

18.
Chen L  Han TZ  Jiang ML 《生理学报》2008,60(2):270-274
前期研究显示低频率多串刺激能够在成年大鼠海马CAl区诱发稳定的长时程压抑(long-term depression,LTD),而这种LTD的受体机制目前还不清楚.本研究采用成年大鼠海马脑片标本,电刺激Schaffer侧枝传入纤维,在CAl区锥体细胞层记录群体锋电位(population spikes,PS),并分别应用N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体和代谢型谷氨酸(metabotropic glutamate,mGlu)受体的拮抗剂AP5和MCPG,观察两组低频率(2-Hz和5-Hz)多串刺激能否诱导LTD,以揭示不同刺激形式诱导成年大鼠LTD的可能受体机制.结果显示,AP5和MCPG都能抑制由2-Hz多串刺激诱导的LTD:强直刺激后20 min时PS幅度分别为基础值的(96.0±3.5)%(n=10)和(95.7±4.1)%(n=8).MCPG能够抑制5-Hz多串刺激诱导的LTD的产生,而AP5不能:分别应用AP5和MCPG后,强直刺激后35 min时PS的幅度分别为基础值的(73.6±4.4)%(n=10)和(98.2±8.9)%(n=8).以上结果提示,2-Hz多串刺激诱导的LTD可能依赖于NMDA受体与mGlu受体的共同活化,而5-Hz多串刺激诱导的LTD只与mGlu受体有关.因此,不同频率的多串刺激诱导的LTD涉及不同的谷氮酸受体机制.  相似文献   

19.
The distribution and immunocytochemical characterization of nerve fibers and their terminals in the posterior longitudinal ligament of the rat lumbar vertebral column was studied in whole-mount preparations and serial semithin and ultrathin sections. Differences in the localization, distribution pattern and density of peptidergic and catecholaminergic nerve fibers were found in the vertebral and intervertebral regions of the posterior longitudinal ligament. For immunocytochemistry, free floating specimens were incubated with primary antibodies against protein gene product 9.5, substance P, calcitonin gene-related peptide, dopamine-beta-hydroxylase, vasoactive intestinal polypeptide and neuropeptide Y together with the avidin-biotin-peroxidase method. In whole-mount preparations, the neural marker protein gene product 9.5 is immunostained in all unmyelinated nerve fibers in the posterior longitudinal ligament, thus giving a panoramic view of the nerve fiber plexus. The most striking nerve fiber plexus is localized in the intervertebral region. In this region, the posterior longitudinal ligament is rich in capillaries that form a dense plexus within its ventral part and extend to the outer layer of the annulus fibrosus. The peptidergic and catecholaminergic innervation of the posterior longitudinal ligament is discussed in the context of pain syndromes related to the vertebral column and degenerative lumbar spine diseases.  相似文献   

20.
Summary The origin and distribution in the urinary bladder of nerve fibers containing neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and substance P (SP) were investigated in rats. Experimental procedures comprised preganglionic decentralization or postganglionic denervation of the bladder and also chemical sympathectomy as well as capsaicin treatment of newborn rats.Nerve fibers containing NPY were richly distributed in the detrusor muscle and also in the pelvic ganglia. Numerous NPY-containing nerve cell bodies were found in pelvic ganglia. A rich occurrence of VIP fibers and a more sparse distribution of SP-containing fibers were also found in the bladder as well as a relatively rich representation of VIP- containing nerve cell bodies in the pelvic ganglia. After decentralization the intensity of VIP and NPY immunofluorescence increased in nerve cell bodies of the pelvic ganglia and in nerve fibers in the wall of the bladder. Postganglionic denervation, on the other hand, eliminated all peptides examined in the bladder wall. After postganglionic denervation the situation in the ganglia was approximately the same as after decentralization. Chemical sympathectomy (6-OHDA) did not seem to change significantly the frequency and distribution of VIP-, SP- and NPY-fibers in the muscle layer of the bladder or in the pelvic ganglia, while the NPY-containing nerve fibers in the submucosal layer and around blood vessels of the bladder disappeared. Adrenergic nerve fibers in the wall of the bladder (visualized by histofluorescence) were markedly reduced in number after administration of 6-OHDA. Capsaicin-treatment of newborn rats caused a loss of SP-fibers in the wall of the bladder, supporting the view that these fibers are sensory in nature in the urinary bladder. Although it cannot be entirely excluded that NPY-containing fibers in the wall of the bladder are adrenergic, the present results suggest that the NPY-fibers as well as the VIP-fibers of the bladder wall originate mainly in non-adrenergic cell bodies of the pelvic ganglia. However, perivascular NPY-containing nerve fibers are adrenergic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号