首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou J  Liao J  Zheng X  Shen H 《BMB reports》2012,45(3):133-140
Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection. [BMB reports 2012; 45(3): 133-140].  相似文献   

2.
Oncogenic fusion genes as the result of chromosomal rearrangements are important for understanding genome instability in cancer cells and developing useful cancer therapies. To date, the mechanisms that create such oncogenic fusion genes are poorly understood. Previously we reported an unappreciated RNA-driven mechanism in human prostate cells in which the expression of chimeric RNA induces specified gene fusions in a sequence-dependent manner. One fundamental question yet to be addressed is whether such RNA-driven gene fusion mechanism is generalizable, or rather, a special case restricted to prostate cells. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene commonly found in low-grade endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The induced fusion gene is validated both at the RNA and the genomic DNA level. The ability of designed chimeric RNAs to drive and recapitulate the formation of JAZF1-SUZ12 gene fusion in endometrial cells represents another independent case of RNA-driven gene fusion, suggesting that RNA-driven genomic recombination is a permissible mechanism in mammalian cells. The results could have fundamental implications in the role of RNA in genome stability, and provide important insight in early disease mechanisms related to the formation of cancer fusion genes.  相似文献   

3.
In nematodes, a fraction of mRNAs acquires a common 22-nucleotide 5'-terminal spliced leader sequence via a trans-splicing reaction. The same premessenger RNAs which receive the spliced leader are also processed by conventional cis-splicing. Whole cell extracts prepared from synchronous embryos of the parasitic nematode Ascaris lumbricoides catalyze both cis- and trans-splicing. We have used this cell-free system and oligodeoxynucleotide directed RNase H digestion to assess the U small nuclear RNA requirements for nematode cis- and trans-splicing. These experiments indicated that both cis- and trans-splicing require intact U2 and U4/U6 small nuclear ribonucleoproteins (snRNPs). However, whereas cis-splicing displays the expected requirement for an intact U1 snRNP, trans-splicing is unaffected when approximately 90% of U1 snRNP is degraded. These results suggest that 5' splice site identification differs in nematode cis- and trans-splicing.  相似文献   

4.
5.
6.
In trypanosomatid protozoa the biogenesis of mature mRNA involves addition of the spliced leader (SL) sequence from the SL RNA to polycistronic pre-mRNA via trans-splicing. Here we present a mutational analysis of the trypanosomatid Leptomonas collosoma SL RNA to further our understanding of its functional domains important for trans-splicing utilization. Mutant SL RNAs were analyzed for defects in modification of the hypermethylated cap structure (cap 4) characteristic of trypanosomatid SL RNAs, for defects in the first step of the reaction and overall utilization in trans-splicing. Single substitution of the cap 4 nucleotides led to undermethylation of the cap 4 structure, and these mutants were all impaired in their utilization in trans-splicing. Abrogation of the sequence of the Sm-like site and sequences downstream to it also showed cap modification and trans-splicing defects, thus providing further support for a functional linkage between cap modifications and trans-splicing. Further, we report that in L. collosoma both the exon and intron of the SL RNA contribute information for efficient function of the SL RNA in trans-splicing. This study, however, did not provide support for the putative SL RNA-U6 small nuclear RNA (snRNA) interaction at the Sm site like in the nematodes, suggesting differences in the bridging role of U6 in the two trans-splicing systems.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Chang J  Taylor JM 《Journal of virology》2003,77(17):9728-9731
In animal cells, small interfering RNAs (siRNA), when exogenously provided, have been reported to be capable of inhibiting replication of several different viruses. In preliminary studies, siRNA species were designed and tested for their ability to act on the protein expressed in Huh7 cells transfected with DNA-directed mRNA constructs containing hepatitis delta virus (HDV) target sequences. The aim was to achieve siRNA specific for each of the three RNAs of HDV replication: (i) the 1,679-nucleotide circular RNA genome, (ii) its exact complement, the antigenome, and (iii) the less abundant polyadenylated mRNA for the small delta protein. Many of the 16 siRNA tested gave >80% inhibition in this assay. Next, these three classes of siRNA were tested for their ability to act during HDV genome replication. It was found that only siRNA targeted against HDV mRNA sequences could interfere with HDV genome replication. In contrast, siRNA targeted against genomic and antigenomic RNA sequences had no detectable effect on the accumulation of these RNAs. Reconstruction experiments with nonreplicating HDV RNA sequences support the interpretation that neither the potential for intramolecular rod-like RNA folding nor the presence of the delta protein conferred resistance to siRNA. In terms of replicating HDV RNAs, it is considered more likely that the genomic and antigenomic RNAs are resistant because their location within the nucleus makes them inaccessible to siRNA-mediated degradation.  相似文献   

16.
嵌合RNA(chimeric RNA)是由来自不同基因的外显子片段组成的融合转录本。传统的嵌合RNA检测方法有染色体核型分析、荧光原位杂交(FISH)等,但这些技术的特异性、灵敏性和准确性较差。随着测序技术的发展,二代测序技术展现出强大的数据处理能力,可以通过高通量序列分析来检测嵌合RNA,目前基于高通量测序的检测方法有FusionCatcher、SOAPfuse、EricScript等。目前较为常用的对检测到的嵌合RNA的验证方法有聚合酶链反应(PCR)、核糖核酸酶保护实验(RPA)、琼脂糖凝胶电泳、Sanger测序等。多种检测技术的开发使得越来越多的嵌合RNA被发现,但现有的检测技术各有优劣,主要体现于检测成本、假阳性率、检测时间等方面的差异。本文对嵌合RNA的检测方法、验证方法及各方法的优劣性进行阐述。  相似文献   

17.
During recent years, the selected knockdown of protein expression by RNA interference has received rapidly growing interest. Although short interfering RNA (siRNA) target designers apply strict selection parameters, the deduced small RNAs need to be tested for their silencing potency. Here we describe a fast and efficient method for evaluating the silencing efficiency of target gene by small hairpin RNAs (shRNAs) in mammalian cells. Cells were cotransfected with two vectors: one containing shRNAs as well as the coding region for green fluorescent protein and one containing a chimeric fusion construct encoding red fluorescent protein coupled to the synaptic vesicle protein SV31. The efficiency of various shRNAs was directly monitored in vivo by fluorescence microscopy.  相似文献   

18.
Messenger RNA maturation in trypanosomes involves an RNA trans-splicing reaction in which a 39 nucleotide 5'-spliced leader (SL), derived from an independently transcribed 139 nucleotide SL RNA, is joined to pre-mRNAs. Trans-splicing intermediates are structurally consistent with a mechanism of SL addition which is similar to that of cis-splicing of nuclear pre-mRNAs; homologous components (e.g. the U small nuclear RNAs) exist in both cis- and trans-splicing systems, suggesting that these also participate in the two types of splicing reactions. In this study, ribonucleoprotein (RNP) complexes containing the trypanosome SL and U2 RNAs were purified and characterized. Although present at low levels in cellular extracts, the SL and U2 RNPs are the two most abundant of the several non-ribosomal small RNP complexes in these cells. The purification scheme utilizes ion-exchange chromatography, equilibrium density centrifugation, and gel filtration chromatography and reveals that the SL RNP shares biophysical properties with U RNPs of trypanosomes and other eukaryotes; its sedimentation coefficient in sucrose gradients is approximately 10 S, and it is resistant to dissociation during Cs2SO4 equilibrium density centrifugation. Complete separation of the SL and U2 RNPs was achieved by non-denaturing polyacrylamide gel electrophoresis. Proteins purifying with the SL and U2 RNPs were identified by 125I-labeling of tyrosine residues. Four SL RNP proteins with approximate molecular masses of 36, 32, 30, and 27 kDa and one U2 RNP protein of 31 kDa were identified, suggesting that different polypeptides are associated with these two RNAs. These particles are not immunoprecipitated by anti-Sm sera which recognizes U snRNP proteins of other eukaryotes including humans plants and yeast.  相似文献   

19.
Cheng CP  Nagy PD 《Journal of virology》2003,77(22):12033-12047
RNA recombination occurs frequently during replication of tombusviruses and carmoviruses, which are related small plus-sense RNA viruses of plants. The most common recombinants generated by these viruses are either defective interfering (DI) RNAs or chimeric satellite RNAs, which are thought to be generated by template switching of the viral RNA-dependent RNA polymerase (RdRp) during the viral replication process. To test if RNA recombination is mediated by the viral RdRp, we used either a purified recombinant RdRp of Turnip crinkle carmovirus or a partially purified RdRp preparation of Cucumber necrosis tombusvirus. We demonstrated that these RdRp preparations generated RNA recombinants in vitro. The RdRp-driven template switching events occurred between either identical templates or two different RNA templates. The template containing a replication enhancer recombined more efficiently than templates containing artificial sequences. We also observed that AU-rich sequences promote recombination more efficiently than GC-rich sequences. Cloning and sequencing of the generated recombinants revealed that the junction sites were located frequently at the ends of the templates (end-to-end template switching). We also found several recombinants that were generated by template switching involving internal positions in the RNA templates. In contrast, RNA ligation-based RNA recombination was not detected in vitro. Demonstration of the ability of carmo- and tombusvirus RdRps to switch RNA templates in vitro supports the copy-choice models of RNA recombination and DI RNA formation for these viruses.  相似文献   

20.
We describe an algorithm for comparing two RNA secondary structures coded in the form of trees that introduces two new operations, called node fusion and edge fusion, besides the tree edit operations of deletion, insertion, and relabeling classically used in the literature. This allows us to address some serious limitations of the more traditional tree edit operations when the trees represent RNAs and what is searched for is a common structural core of two RNAs. Although the algorithm complexity has an exponential term, this term depends only on the number of successive fusions that may be applied to a same node, not on the total number of fusions. The algorithm remains therefore efficient in practice and is used for illustrative purposes on ribosomal as well as on other types of RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号