首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
2.

Background

The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA).

Methodology/Principal Findings

The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH) activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component) of 34 µM.

Conclusions/Significance

The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.  相似文献   

3.
The uptake of arachidonoyl ethanolamide (anandamide, AEA) in rat basophilic leukemia cells (RBL-2H3) has been proposed to occur via a saturable transporter that is blocked by specific inhibitors. Measuring uptake at 25 s, when fatty acid amide hydrolase (FAAH) does not appreciably affect uptake, AEA accumulated via a nonsaturable mechanism at 37 degrees C. Interestingly, saturation was observed when uptake was plotted using unbound AEA at 37 degrees C. Such apparent saturation can be explained by rate-limited delivery of AEA through an unstirred water layer surrounding the cells (1). In support of this, we observed kinetics consistent with rate-limited diffusion at 0 degrees C. Novel transport inhibitors have been synthesized that are either weak FAAH inhibitors or do not inhibit FAAH in vitro (e.g. UCM707, OMDM2, and AM1172). In the current study, none of these purported AEA transporter inhibitors affected uptake at 25 s. Longer incubation times illuminate downstream events that drive AEA uptake. Unlike the situation at 25 s, the efficacy of these inhibitors was unmasked at 5 min with appreciable inhibition of AEA accumulation correlating with partial inhibition of AEA hydrolysis. The uptake and hydrolysis profiles observed with UCM707, VDM11, OMDM2, and AM1172 mirrored two selective and potent FAAH inhibitors CAY10400 and URB597 (at low concentrations), indicating that weak inhibition of FAAH can have a pronounced effect upon AEA uptake. At 5 min, the putative transport inhibitors did not reduce AEA uptake in FAAH chemical knock-out cells. This strongly suggests that the target of UCM707, VDM11, OMDM2, and AM1172 is not a transporter at the plasma membrane but rather FAAH, or an uncharacterized intracellular component that delivers AEA to FAAH. This system is therefore unique among neuro/immune modulators because AEA, an uncharged hydrophobic molecule, diffuses into cells and partial inhibition of FAAH has a pronounced effect upon its uptake.  相似文献   

4.
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors.Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.  相似文献   

5.
The cellular inactivation of the endogenous cannabinoid (endocannabinoid) anandamide (AEA) represents a controversial and intensely investigated subject. This process has been proposed to involve two proteins, a transporter that promotes the cellular uptake of AEA and fatty acid amide hydrolase (FAAH), which hydrolyzes AEA to arachidonic acid. However, whereas the role of FAAH in AEA metabolism is well-characterized, the identity of the putative AEA transporter remains enigmatic. Indeed, the indirect pharmacological evidence used to support the existence of an AEA transporter has been suggested also to be compatible with a model in which AEA uptake is driven by simple diffusion coupled to FAAH metabolism. Here, we have directly addressed the contribution of FAAH to AEA uptake by examining this process in neuronal preparations from FAAH(-/-) mice and in the presence of the uptake inhibitor UCM707. The results of these studies reveal that (i) care should be taken to avoid the presence of artifacts when studying the cellular uptake of lipophilic molecules like AEA, (ii) FAAH significantly contributes to AEA uptake, especially with longer incubation times, and (iii) a UCM707-sensitive protein(s) distinct from FAAH also participates in AEA uptake. Interestingly, the FAAH-independent component of AEA transport was significantly reduced by pretreatment of neurons with the cannabinoid receptor 1 (CB1) antagonist SR141716A. Collectively, these results indicate that the protein-dependent uptake of AEA is largely mediated by known constituents of the endocannabinoid system (FAAH and the CB1 receptor), although a partial contribution of an additional UCM707-sensitive protein is also suggested.  相似文献   

6.
Glaser ST  Kaczocha M  Deutsch DG 《Life sciences》2005,77(14):1584-1604
Anandamide (AEA) uptake has been described over the last decade to occur by facilitated diffusion, but a protein has yet to be isolated. In some cell types, it has recently been suggested that AEA, an uncharged hydrophobic molecule, passively diffuses through the plasma membrane in a process that is not protein-mediated. Since that observation, recent kinetics studies (using varying assay conditions) have both supported and denied the presence of an AEA transporter. In this review, we analyze the current literature exploring the mechanism of AEA uptake and endeavor to explain the reasons for the divergent views. One of the main variables among laboratories is the incubation time of the cells with AEA. Initial kinetics (at time points <1 min depending upon the cell type) isolate events that occur at the plasma membrane and are most useful to study saturability of uptake and effects of purported transport inhibitors upon uptake. Results with longer incubation times reflect events not only at the plasma membrane but also interactions at intracellular sites that may include enzyme(s), other proteins, or specialized lipid-binding domains. Furthermore, at long incubation times, antagonists to AEA receptors reduce AEA uptake. Another complicating factor in AEA transport studies is the nonspecific binding to plastic culture dishes. The magnitude of this effect may exceed AEA uptake into cells. Likewise, AEA may be released from plastic culture dishes (without cells) in such a manner as to mimic efflux from cells. AEA transport protocols using BSA, similar to the method used for fatty acid uptake studies, are gaining acceptance. This may improve AEA solution stability and minimize binding to plastic, although some groups report that BSA interferes with uptake. In response to criticisms that many transport inhibitors also inhibit the fatty acid amide hydrolase (FAAH), new compounds have recently been synthesized. Following their characterization in FAAH+/+ and FAAH-/- cells and transgenic mice, several inhibitors have been shown to have physiological activity in FAAH-/- mice. Their targets are now being characterized with the possibility that a protein transporter for AEA may be characterized.  相似文献   

7.
Treatment of intact human neuroblastoma CHP100 cells with anandamide (arachidonoylethanolamide, AEA) or 2-arachidonoylglycerol (2-AG) inhibits intracellular fatty acid amide hydrolase (FAAH). This effect was not associated with covalent modifications of FAAH, since specific inhibitors of farnesyltransferase, kinases, phosphatases, glycosyltransferase or nitric oxide synthase were ineffective. Electrophoretic analysis of (33)P-labelled proteins, Western blot with anti-phosphotyrosine antibodies, and glycan analysis of cellular proteins confirmed the absence of covalent modifications of FAAH. The inhibition by AEA was paralleled by an increased arachidonate release, which was not observed upon treatment of cells with linoleoylethanolamide, palmitoylethanolamide, or oleoylethanolamide. Moreover, cell treatment with AEA or 2-AG increased the activity of cyclooxygenase and 5-lipoxygenase, and the hydro(pero)xides generated from arachidonate by lipoxygenase were shown to inhibit FAAH, with inhibition constants in the low micromolar range. Consistently, inhibitors of 5-lipoxygenase, but not those of cyclooxygenase, significantly counteracted the inhibition of FAAH by AEA or 2-AG.  相似文献   

8.
Neuropathic pain elevates spinal anandamide (AEA) levels in a way further increased when URB597, an inhibitor of AEA hydrolysis by fatty acid amide hydrolase (FAAH), is injected intrathecally. Spinal AEA reduces neuropathic pain by acting at both cannabinoid CB1 receptors and transient receptor potential vanilloid-1 (TRPV1) channels. Yet, intrathecal URB597 is only partially effective at counteracting neuropathic pain. We investigated the effect of high doses of intrathecal URB597 on allodynia and hyperalgesia in rats with chronic constriction injury (CCI) of the sciatic nerve. Among those tested, the 200 µg/rat dose of URB597 was the only one that elevated the levels of the FAAH non-endocannabinoid and anti-inflammatory substrates, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and of the endocannabinoid FAAH substrate, 2-arachidonoylglycerol, and fully inhibited thermal and tactile nociception, although in a manner blocked almost uniquely by TRPV1 antagonism. Surprisingly, this dose of URB597 decreased spinal AEA levels. RT-qPCR and western blot analyses demonstrated altered spinal expression of lipoxygenases (LOX), and baicalein, an inhibitor of 12/15-LOX, significantly reduced URB597 analgesic effects, suggesting the occurrence of alternative pathways of AEA metabolism. Using immunofluorescence techniques, FAAH, 15-LOX and TRPV1 were found to co-localize in dorsal spinal horn neurons of CCI rats. Finally, 15-hydroxy-AEA, a 15-LOX derivative of AEA, potently and efficaciously activated the rat recombinant TRPV1 channel. We suggest that intrathecally injected URB597 at full analgesic efficacy unmasks a secondary route of AEA metabolism via 15-LOX with possible formation of 15-hydroxy-AEA, which, together with OEA and PEA, may contribute at producing TRPV1-mediated analgesia in CCI rats.  相似文献   

9.
10.
Anandamide (AEA), a prominent member of the endogenous ligands of cannabinoid receptors (endocannabinoids), is known to affect several functions of brain and peripheral tissues. A potential role for AEA in skin pathophysiology has been proposed, yet its molecular basis remains unknown. Here we report unprecedented evidence that spontaneously immortalized human keratinocytes (HaCaT) and normal human epidermal keratinocytes (NHEK) have the biochemical machinery to bind and metabolize AEA, i.e. a functional type-1 cannabinoid receptor (CB1R), a selective AEA membrane transporter (AMT), an AEA-degrading fatty acid amide hydrolase (FAAH), and an AEA-synthesizing phospholipase D (PLD). We show that, unlike CB1R and PLD, the activity of AMT and the activity and expression of FAAH increase while the endogenous levels of AEA decrease in HaCaT and NHEK cells induced to differentiate in vitro by 12-O-tetradecanoylphorbol 13-acetate (TPA) plus calcium. We also show that exogenous AEA inhibits the formation of cornified envelopes, a hallmark of keratinocyte differentiation, in HaCaT and NHEK cells treated with TPA plus calcium, through a CB1R-dependent reduction of transglutaminase and protein kinase C activity. Moreover, transient expression in HaCaT cells of the chloramphenicol acetyltransferase reporter gene under control of the loricrin promoter, which contained a wild-type or mutated activating protein-1 (AP-1) site, showed that AEA inhibited AP-1 in a CB1R-dependent manner. Taken together, these data demonstrate that human keratinocytes partake in the peripheral endocannabinoid system and show a novel signaling mechanism of CB1 receptors, which may have important implications in epidermal differentiation and skin development.  相似文献   

11.
Endocannabinoids are a group of biologically active endogenous lipids that have recently emerged as important mediators in energy balance control. The two best studied endocannabinoids, anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) are the endogenous ligands of the central and peripheral cannabinoid receptors. Furthermore, AEA binds to the transient receptor potential vanilloid type-1 (TRPV1), a capsaicin-sensitive, non-selective cation channel. The synthesis of these endocannabinoids is catalyzed by the N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and the sn-1-selective diacylglycerol lipase (DAGL), whereas their degradation is accomplished by the fatty acid amide hydrolase (FAAH) and the monoglyceride lipase (MGL), respectively. We investigated the presence of a functional endocannabinoid system in human adipose tissue from seven healthy subjects. Subcutaneous abdominal adipose tissue underwent biochemical and molecular biology analyses, aimed at testing the expression of this system and its functional activity. AEA and 2-AG levels were detected and quantified by HPLC. Real time PCR analyzed the expression of the endocannabinoid system and immunofluorescence assays showed the distribution of its components in the adipose tissue. Furthermore, binding assay for the cannabinoid and vanilloid receptors and activity assay for each metabolic enzyme of the endocannabinoid system gave clear evidence of a fully operating system. The data presented herein show for the first time that the human adipose tissue is able to bind AEA and 2-AG and that it is endowed with the biochemical machinery to metabolize endocannabinoids.  相似文献   

12.
Macrophage-derived endocannabinoids have been implicated in endotoxin (lipopolysaccharide (LPS))-induced hypotension, but the endocannabinoid involved and the mechanism of its regulation by LPS are unknown. In RAW264.7 mouse macrophages, LPS (10 ng/ml) increases anandamide (AEA) levels >10-fold via CD14-, NF-kappaB-, and p44/42-dependent, platelet-activating factor-independent activation of the AEA biosynthetic enzymes, N-acyltransferase and phospholipase D. LPS also induces the AEA-degrading enzyme fatty acid amidohydrolase (FAAH), and inhibition of FAAH activity potentiates, whereas actinomycin D or cycloheximide blocks the LPS-induced increase in AEA levels and N-acyltransferase and phospholipase D activities. In contrast, cellular levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are unaffected by LPS but increased by platelet-activating factor. LPS similarly induces AEA, but not 2-AG, in mouse peritoneal macrophages where basal AEA levels are higher, and the LPS-stimulated increase in AEA is potentiated in cells from FAAH-/- as compared with FAAH+/+ mice. Intravenous administration of 107 LPS-treated mouse macrophages to anesthetized rats elicits hypotension, which is much greater in response to FAAH-/- than FAAH+/+ cells and is susceptible to inhibition by SR141716, a cannabinoid CB1 receptor antagonist. We conclude that AEA and 2-AG synthesis are differentially regulated in macrophages, and AEA rather than 2-AG is a major contributor to LPS-induced hypotension.  相似文献   

13.
Mulder AM  Cravatt BF 《Biochemistry》2006,45(38):11267-11277
Lipid transmitters are tightly regulated by a balance of biosynthetic and degradative enzymes. Termination of the activity of the N-acyl ethanolamine (NAE) class of lipid-signaling molecules, including the endocannabinoid anandamide (AEA), is principally mediated by the integral membrane enzyme fatty acid amide hydrolase (FAAH) in vivo. FAAH(-/-) mice are highly sensitized to the pharmacological effects of AEA; however, these animals eventually recover from AEA treatment, implying the existence of alternative routes for NAE metabolism. Here, we have pursued the characterization of these pathways by profiling the metabolome of FAAH(-/-) mice treated with AEA. Multiple AEA-induced metabolites were observed in brains from FAAH(-/-) mice, including a major product with a mass shift of +165 Da (m/z 513). The structure of this product was determined to be O-phosphorylcholine (PC)-AEA. Analysis of untreated mice identified PC-NAEs as endogenous constituents of the central nervous system (CNS) that were highly elevated in FAAH(-/-) animals. PC-NAEs were very poor substrates for FAAH; however, a vanadate-sensitive enzymatic activity was detected in brain membranes that converted PC-NAEs back to their parent NAEs. The choline-specific phosphodiesterase NPP6 was identified as a candidate enzyme responsible for this activity. These data indicate the presence of a complete metabolic pathway for the production and degradation of PC-NAEs in the CNS that constitutes an alternative route for endocannabinoid metabolism.  相似文献   

14.
Anandamide (N -arachidonoylethanolamine, AEA) is a major endocannabinoid, shown to impair mouse pregnancy and embryo development and to induce apoptosis in blastocysts. Here, we review the roles of AEA, of the AEA-binding cannabinoid (CB) receptors, of the selective AEA membrane transporter (AMT), and of the AEA-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), in human gestation. In particular, we discuss the interplay between the endocannabinoid system and the hormone-cytokine array involved in the control of human pregnancy, showing that the endocannabinoids take part in the immunological adaptation occurring during early pregnancy. In this line, we discuss the critical role of FAAH in human peripheral lymphocytes, showing that the expression of this enzyme is regulated by progesterone, Th1 and Th2 cytokines, which also regulate fertility. Moreover, we show that AEA and the other endocannabinoid, 2-arachidonoylglycerol, inhibit the release of the fertility-promoting cytokine leukemia inhibitory factor from human lymphocytes. Taken together, low FAAH and consistently high blood levels of AEA, but not CB receptors or AMT, can be early (<8 weeks of gestation) markers of spontaneous abortion, potentially useful as diagnostic tools for large-scale, routine monitoring of gestation in humans.  相似文献   

15.
The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ?G values of ?3.6 and ?4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (?6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.  相似文献   

16.
The endocannabinoid system (ECS) plays an important role in pain processing and modulation. Since the specific effects of endocannabinoids within the orofacial area are largely unknown, we aimed to determine whether an increase in the endocannabinoid concentration in the cerebrospinal fluid (CSF) caused by the peripheral administration of the FAAH inhibitor URB597 and tooth pulp stimulation would affect the transmission of impulses between the sensory and motor centers localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were evaluated on rats using a method that allowed the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation and URB597 treatment. The amplitude of ETJ was a measure of the effect of endocannabinoids on the neural structures. The concentrations of the endocannabinoids tested (AEA and 2-AG) were determined in the CSF, along with the expression of the cannabinoid receptors (CB1 and CB2) in the tissues of the mesencephalon, thalamus, and hypothalamus. We demonstrated that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was significantly increased in the CSF after treatment with a FAAH inhibitor, while tooth pulp stimulation had no effect on the AEA and 2-AG concentrations in the CSF. We also found positive correlations between the CSF AEA concentration and cannabinoid receptor type 1 (CB1R) expression in the brain, and between 2-AG and cannabinoid receptor type 2 (CB2R), and negative correlations between the CSF concentration of AEA and brain CB2R expression, and between 2-AG and CB1R. Our study shows that endogenous AEA, which diffuses through the cerebroventricular ependyma into CSF and exerts a modulatory effect mediated by CB1Rs, alters the properties of neurons in the trigeminal sensory nuclei, interneurons, and motoneurons of the hypoglossal nerve. In addition, our findings may be consistent with the emerging concept that AEA and 2-AG have different regulatory mechanisms because they are involved differently in orofacial pain. We also suggest that FAAH inhibition may offer a therapeutic approach to the treatment of orofacial pain.  相似文献   

17.
Down-regulation of anandamide hydrolase in mouse uterus by sex hormones.   总被引:7,自引:0,他引:7  
Endocannabinoids are an emerging class of lipid mediators, which mimic several effects of cannabinoids. Anandamide (arachidonoylethanolamide) is a major endocannabinoid, which has been shown to impair pregnancy and embryo development. The activity of anandamide is controlled by cellular uptake through a specific transporter and intracellular degradation by the enzyme anandamide hydrolase (fatty acid amide hydrolase, FAAH). We characterized FAAH in mouse uterus by radiochromatographic and immunochemical techniques, showing that the enzyme is confined to the epithelium and its activity decreases appreciably during pregnancy or pseudopregnancy because of lower gene expression at the translational level. Ovariectomy prevented the decrease in FAAH, and both progesterone and estrogen further reduced its basal levels, suggesting hormonal control of the enzyme. Anandamide was shown to induce programmed cell death in mouse blastocysts, through a pathway independent of type-1 cannabinoid receptor. Blastocysts, however, have a specific anandamide transporter and FAAH, which scavenge this lipid. Taken together, these results provide evidence of an interplay between endocannabinoids and sex hormones in pregnancy. These findings may also be relevant for human fertility, as epithelial cells from healthy human uterus showed FAAH activity and expression, which in adenocarcinoma cells was increased fivefold.  相似文献   

18.
Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. Since sperm detachment may be due to surface remodeling brought about by capacitation, the aim of this paper was to investigate whether anandamide at physiological concentrations could act as a capacitating agent in bull spermatozoa. We demonstrated that at nanomolar concentrations R(+)-methanandamide or anandamide induced bull sperm capacitation, whereas SR141716A and capsazepine (a TRPV1 antagonist) inhibited this induction. Previous studies indicate that mammalian spermatozoa possess the enzymatic machinery to produce and degrade their own AEA via the actions of the AEA-synthesizing phospholipase D and the fatty acid amide hydrolase (FAAH) respectively. Our results indicated that, URB597, a potent inhibitor of the FAAH, produced effects on bovine sperm capacitation similar to those elicited by exogenous AEA suggesting that this process is normally regulated by an endogenous tone. We also investigated whether anandamide is involved in bovine heparin-capacitated spermatozoa, since heparin is a known capacitating agent of bovine sperm. When the spermatozoa were incubated in the presence of R(+)-methanandamide and heparin, the percentage of capacitated spermatozoa was similar to that in the presence of R(+)-methanandamide alone. The pre-incubation with CB1 or TRPV1 antagonists inhibited heparin-induced sperm capacitation; moreover the activity of FAAH was 30% lower in heparin-capacitated spermatozoa as compared to control conditions. This suggests that heparin may increase endogenous anandamide levels. Our findings indicate that anandamide induces sperm capacitation through the activation of CB1 and TRPV1 receptors and could be involved in the same molecular pathway as heparin in bovines.  相似文献   

19.
Plasma anandamide (AEA) levels fluctuate throughout the menstrual cycle and in early pregnancy in a pattern suggesting its involvement in implantation and early pregnancy maintenance through mechanisms that might involve its binding to cannabinoid receptors CB1 and CB2. Plasma AEA levels are maintained by the actions of the enzymes fatty acid amide hydrolase (FAAH) and N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD). All of these component parts of the ‘endocannabinoid system’ have been demonstrated in rodent but not in human uteri. This study aimed to demonstrate the presence of the endocannabinoid system in the human uterus and catalogue its modulation. Immunohistochemical techniques were employed to localise and determine the distribution of immunoreactive CB1, CB2, FAAH, and NAPE-PLD in well-characterised menstrual cycle biopsy samples. Immunoreactive CB1 and CB2 were widely distributed throughout the uterine tissue. In the myometrium and endometrium, smooth muscle cells were immunoreactive, although the vascular smooth muscle cells in both tissues were more so. In the endometrium, CB1 and CB2 immunoreactivity was primarily restricted to the glandular epithelium and expression was unrelated to the phase of the cycle. FAAH immunoreactivity in the endometrium was highest in the mid-proliferative gland and mid-secretory stroma, whilst NAPE-PLD immunoreactivity was down-regulated in the secretory epithelial gland compared to the proliferative epithelial gland and unaffected in the stroma. These data indicate that elements of the ‘endocannabinoid system’ coexist in many cell types within the uterus and may provide insight into the sites of action of endogenous and exogenous cannabinoids during endometrial transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号