首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract: Oxidative stress is implicated in a number of neurological disorders including stroke, Parkinson's disease, and Alzheimer's disease. To study the effects of oxidative stress on neuronal cells, we have used an immortalized mouse hippocampal cell line (HT-22) that is particularly sensitive to glutamate. In these cells, glutamate competes for cystine uptake, leading to a reduction in glutathione and, ultimately, cell death. As it has been reported that protein kinase C activation inhibits glutamate toxicity in these cells and is also associated with the inhibition of apoptosis in other cell types, we asked if glutamate toxicity was via apoptosis. Morphologically, glutamate-treated cells underwent plasma membrane blebbing and cell shrinkage, but no DNA fragmentation was observed. At the ultrastructural level, there was damage to mitochondria and other organelles although the nuclei remained intact. Protein and RNA synthesis inhibitors as well as certain protease inhibitors protected the cells from glutamate toxicity. Both the macromolecular synthesis inhibitors and the protease inhibitors had to be added relatively soon after the addition of glutamate, suggesting that protein synthesis and protease activation are early and distinct steps in the cell death pathway. Thus, the oxidative stress brought about by treatment with glutamate initiates a series of events that lead to a form of cell death distinct from either necrosis or apoptosis.  相似文献   

3.
4.
After programmed cell death, a cell corpse is engulfed and quickly degraded by a neighboring cell. For degradation to occur, engulfing cells must recognize, phagocytose and digest the corpses of dying cells. Previously, three genes were known to be involved in eliminating cell corpses in the nematode Caenorhabditis elegans: ced-1, ced-2 and nuc-1. We have identified five new genes that play a role in this process: ced-5, ced-6, ced-7, ced-8 and ced-10. Electron microscopic studies reveal that mutations in each of these genes prevent engulfment, indicating that these genes are needed either for the recognition of corpses by other cells or for the initiation of phagocytosis. Based upon our study of double mutants, these genes can be divided into two sets. Animals with mutations in only one of these sets of genes have relatively few unengulfed cell corpses. By contrast, animals with mutations in both sets of genes have many unengulfed corpses. These observations suggest that these two sets of genes are involved in distinct and partially redundant processes that act in the engulfment of cell corpses.  相似文献   

5.
6.
Ascorbate peroxidase from Leishmania major (LmAPX) is one of the key enzymes for scavenging of reactive oxygen species generated from the mitochondrial respiratory chain. We have investigated whether mitochondrial LmAPX has any role in oxidative stress-induced apoptosis. The measurement of reduced glutathione (GSH) and protein carbonyl contents in cellular homogenates indicates that overexpression of LmAPX protects Leishmania cells against depletion of GSH and oxidative damage of proteins by H2O2 or camptothecin (CPT) treatment. Confocal microscopy and fluorescence spectroscopy data have revealed that the intracellular elevation of Ca2+ attained by the LmAPX-overexpressing cells was always below that attained in control cells. Flow cytometry assay data and confocal microscopy observation strongly suggest that LmAPX overexpression protects cells from H2O2-induced mitochondrial membrane depolarization as well as ATP decrease. Western blot data suggest that overexpression of LmAPX shields against H2O2- or CPT-induced cytochrome c and endonuclease G release from mitochondria and subsequently their accumulation in the cytoplasm. Caspase activity assay by flow cytometry shows a lower level of caspase-like protease activity in LmAPX-overexpressing cells under apoptotic stimuli. The data on phosphatidylserine exposed on the cell surface and DNA fragmentation results show that overexpression of LmAPX renders the Leishmania cells more resistant to apoptosis provoked by H2O2 or CPT treatment. Taken together, these results indicate that constitutive overexpression of LmAPX in the mitochondria of L. major prevents cells from the deleterious effects of oxidative stress, that is, mitochondrial dysfunction and cellular death.In multicellular organisms, mitochondria are the major physiological source of reactive oxygen species (ROS) within cells and also are important checkpoints for the control of programmed cell death (27). There are increasing numbers of reports that describe apoptosis- or programmed cell death-like processes in unicellular organisms also, such as trypanosomatids (4, 60), bacteria (20, 25), yeasts (34), and Plasmodium (3). Among the kinetoplastid parasites, Trypanosoma and Leishmania are the most carefully studied genera where apoptotic features are well established (49). Several reports have shown that mitochondrial dysfunction or an imbalance of antioxidant homeostasis causes an increase in mitochondrion-generated ROS, which include H2O2, superoxide radical anions, singlet oxygen, and hydroxyl radicals. These species have all been implicated in apoptosis (16, 26, 28, 41). Increasing evidence has been presented to support that ROS homeostasis regulates two major types of important physiological processes and exerts diverse functions within cells. One type of function includes damage or oxidation of cellular macromolecules (DNA, proteins, and lipids), which can lead to necrotic cell death or protein modification (7). The second type of function includes the activation of cellular signaling cascades that regulate proliferation, detoxification, DNA repair, or apoptosis (11). The detoxification of toxic mitochondrial ROS in cells occurs through a variety of cellular antioxidant enzymes, such as superoxide dismutase, which detoxifies cells from superoxide released into the mitochondrial matrix, and several other antioxidant proteins, such as catalase, glutathione (GSH) peroxidase, and peroxiredoxins, which are known to catalyze further degradation of H2O2 (44). During its life cycle, the Leishmania sp. encounters a pool of ROS that is generated either by its own physiological processes or as a result of host immune reaction and drug metabolism. However, unlike most eukaryotes, Leishmania lacks catalase- and selenium-containing GSH peroxidases, enzymes that play a front-line role in detoxifying ROS. Hence, the mechanism by which it resists the toxic effects of H2O2 remains poorly understood.Recently, we cloned, expressed and characterized the unusual heme-containing ascorbate peroxidase from Leishmania major (LmAPX) and observed that the expression of LmAPX is increased when Leishmania cells are treated with exogenous H2O2 (1, 18). This enzyme is a functional hybrid between cytochrome c peroxidase and APX, owing to its ability to use both ascorbate and cytochrome c as reducing electron donors (58). Colocalization studies by confocal microscopy, submitochondrial fractionation analysis of the isolated mitochondria, and subsequent Western blot analysis with anti-LmAPX antibody have confirmed that the mature enzyme is present in intermembrane space side of the inner membrane. It has also been shown that overexpression of LmAPX causes a decrease in the mitochondrial ROS burden, an increase in tolerance to H2O2, and protection against cardiolipin oxidation under oxidative stress (18). Although previous studies have shown that Leishmania species use superoxide dismutase (23), peroxiredoxins (8), intracellular thiols (14), lipophosphoglycan (13), trypanothione (5), HSP 70 (a heat shock protein) (36), tryparedoxin peroxidase (29), and APX (18) for detoxification of ROS, it is still unclear how the antioxidants protect against oxidative stress-induced apoptotic events in the unicellular organism Leishmania.Since the LmAPX protein is localized in the mitochondria, we hypothesized that it would be a key protein for the maintenance of mitochondrial functions due to its antioxidant properties via its ROS-scavenging function (18). To test this hypothesis, we overexpressed LmAPX in Leishmania major cells and investigated whether overexpression of LmAPX can confer resistance to oxidant-mediated mitochondrial damage as well as oxidative stress-induced cell death. In this study, we provide evidence that the overexpression of LmAPX in Leishmania cells can indeed protect against camptothecin (CPT) or H2O2-mediated mitochondrial damage as measured by various parameters, including disruption of mitochondrial membrane potential (Δψm), decrease of ATP production, and cytochrome c and endonuclease G release from mitochondria. Cells overexpressing LmAPX were also protected against oxidative stress-induced protein carbonylation, DNA fragmentation, and apoptosis. To the best of our knowledge, this is the first report of a mitochondrial hemeperoxidase that controls the ROS-induced mitochondrial death pathway.  相似文献   

7.
8.
Cancer is a destructive disease that causes high levels of morbidity and mortality. Doxorubicin (DOX) is a highly efficient antineoplastic chemotherapeutic drug, but its use places survivors at risk for cardiotoxicity. Many studies have demonstrated that multiple factors are involved in DOX-induced acute cardiotoxicity. Among them, oxidative stress and cell death predominate. In this review, we provide a comprehensive overview of the mechanisms underlying the source and effect of free radicals and dependent cell death pathways induced by DOX. Hence, we attempt to explain the cellular mechanisms of oxidative stress and cell death that elicit acute cardiotoxicity and provide new insights for researchers to discover potential therapeutic strategies to prevent or reverse doxorubicin-induced cardiotoxicity.  相似文献   

9.
Caspase家族是一类半胱氨酸天冬氨酸特异性蛋白酶,其中caspase-1是最先在哺乳动物细胞中被鉴定出来的家族成员,介导了某些特定类型细胞的凋亡。在微生物感染或细胞内危险信号存在时,caspase-1可通过与炎性体结合而发生激活,从而加工pro-IL-1β和pro-IL-18等炎症因子使其成熟并释放,在炎症反应中起着核心调控作用。此外,caspase-1还能介导一种特殊的促炎症的程序性细胞死亡(Pyroptosis)。caspase-1参与的炎症及程序性细胞死亡能有效提高机体抵抗内源和外源各种刺激的能力,达到保护宿主的目的,而caspase-1的功能异常则与多种疾病密切相关。  相似文献   

10.
11.
植物细胞程序死亡的机理及其与发育的关系   总被引:41,自引:3,他引:41  
崔克明 《植物学通报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD的细胞分化的最后阶段。细胞分化的临界期就牌死亡程序执行中的某个阶段。PCD包含启动期和清除期三个阶段,其间CASPASE家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD  相似文献   

12.
崔克明 《植物学报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD是细胞分化的最后阶段。细胞分化的临界期就处于死亡程序执行中的某个阶段。PCD包含启动期、效应期和清除期三个阶段,其间caspase家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD中的形态学变化和生物化学变化都有着严格的时序性。植物的PCD和动物的PCD有许多共性,包括细胞形态和DNA降解等变化。也有一些不同,植物PCD的产物既可被其它细胞吸收利用;也可用于构建自身的次生细胞壁。  相似文献   

13.
14.
15.
Selol is an organic selenitetriglyceride formulation containing selenium at +4 oxidation level that can be effectively incorporated into catalytic sites of of Se-dependent antioxidants. In the present study, the potential antioxidative and cytoprotective effects of Selol against sodium nitroprusside (SNP)-evoked oxidative/nitrosative stress were investigated in PC12 cells and the underlying mechanisms analyzed. Spectrophoto- and spectrofluorimetic methods as well as fluorescence microscopy were used in this study; mRNA expression was quantified by real-time PCR. Selol dose-dependently improved the survival and decreased the percentage of apoptosis in PC12 cells exposed to SNP. To determine the mechanism of this protective action, the effect of Selol on free radical generation and on antioxidative potential was evaluated. Selol offered significant protection against the elevation of reactive oxidative species (ROS) evoked by SNP. Moreover, this compound restored glutathione homeostasis by ameliorating the SNP-evoked disturbance of GSH/GSSG ratio. The protective effect exerted by Selol was associated with the prevention of SNP-mediated down-regulation of antioxidative enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR). Finally, GPx inhibition significantly abolished the cytoprotective effect of Selol. In conclusion, these results suggest that Selol effectively protected PC12 cells against SNP-induced oxidative damage and death by adjusting free radical levels and antioxidant system, and suppressing apoptosis. Selol could be successfully used in the treatments of diseases that involve oxidative stress and resulting apoptosis.  相似文献   

16.
聚腺苷二磷酸核糖基聚合酶(poly (ADP-ribose) polyerase, PARP)是存在于多数真核细胞中的一个蛋白质翻译后修饰酶,它可催化组蛋白H1等重要核蛋白及它自身的聚腺苷二磷酸核糖基化作用.细胞受到外界损伤因子作用时, DNA发生链断裂,PARP结合到DNA断裂口,其催化活性被激活,修饰受体蛋白,进而引发一系列级联反应.这种性质使PARP有可能作为细胞内的分子感受器和传感器,启动细胞内对损伤作出反应的信号传导机制,从而根据细胞受损程度决定细胞的命运:修复或是死亡.  相似文献   

17.
The process of programmed cell death is frequently attenuatedby inhibitors of protein and RNA synthesis. This implies thatgene expression is necessary for the active elimination of somecell types. Genes such as bcl-2 and bax have been implicatedin the direct control of cell death, while cellular immediate-earlygenes (clEGs), such as c-fos and c-jun have been repeatedlyassociated with neuronal degeneration. We are using the olfactoryneuroepithelium as a model system to investigate the role thatexpression of such genes might play in cell death. The advantagesof this system is that even in the adult, there is spontaneousdegeneration of olfactory receptor neurons followed by theirreplacement by the division and differentiation of precursors.Futhermore, the receptor neurons can be induced to die synchronouslyby removal of the olfactory bulb or intranasal administrationof toxic agents. We have generated fos-lacZ and jun-lacZ transgenicmice that can be used to assess expression of c-fos and c-junfollowing these various manipulations. In addition, a line oftransgenic mice has been derived that express Bcl-2 under thecontrol of the olfactory receptor protein promoter. These micehave high levels of Bcl-2 selectively in receptor neurons ofthe primary neuro-epithelium and vomeronasal organ. Since insome circumstances, Bcl-2 can protect against programmed celldeath these mice are being assessed for neuronal turnover underbasal conditions and following olfactory bulbectomy.  相似文献   

18.
经渗透胁迫后 ,CO2 倍增条件下小麦叶片的SOD、POX和CAT的活性均显著高于对照 ,上升或稳定时期较长 ;在渗透胁迫后期MDA含量和电解质泄露率增加较慢 ,显著低于对照 ;H2 O2 含量一直高于对照但进行PEG胁迫后增长较慢。CO2 倍增条件下 ,小麦细胞出现DNA梯的时间较晚而且持续的时间较长 ,DNA梯出现时抗氧化酶和H2 O2 处于相对稳定状态。结果表明在渗透胁迫下CO2 倍增使小麦的抗氧化能力增强从而减轻了对细胞膜和DNA的损伤 ,并且干旱条件下小麦的细胞程序性死亡可能是由于细胞内氧化过强所致  相似文献   

19.
果蝇程序化死亡基因5(PDCD5)同源cDNA的克隆和序列分析   总被引:2,自引:0,他引:2  
 为了解人类白血病细胞凋亡相关新基因 TFAR1 9(PDCD5,programmed cell death5)在不同种属间的序列同源性 ,利用 EST(expression sequence tag)拼接、RT- PCR、DNA序列测定技术及计算机分析技术 ,首次成功地进行了果蝇 PDCD5同源 c DNA编码区基因克隆和序列分析 .发现果蝇与小鼠及果蝇与人 PDCD5在核苷酸水平上分别有 57.5%和 57.1 %的同源性 ,在氨基酸水平上分别有 46.8%和 46.4%的同源性 .功能区分析发现 ,果蝇 PDCD5c DNA编码 1 33个氨基酸 ,计算机预测可能是一种核蛋白 ,含 5个可能的酪蛋白激酶 (casein kinase )磷酸化位点 ,2个可能的 PKC磷酸化位点 ,与人 PDCD5的功能区类似 .因而果蝇 PDCD5是与人 PDCD5同源的新基因 ,可能都与细胞程序化死亡相关 .  相似文献   

20.
Programmed cell death (PCD) occurs in adults to maintain normal tissue homeostasis and during embryological development to shape tissues and organs1,2,6,7. During development, toxic chemicals or genetic alterations can cause an increase in PCD or change PCD patterns resulting in developmental abnormalities and birth defects3-5. To understand the etiology of these defects, the study of embryos can be complemented with in vitro assays that use differentiating embryonic stem (ES) cells.Apoptosis is a well-studied form of PCD that involves both intrinsic and extrinsic signaling to activate the caspase enzyme cascade. Characteristic cell changes include membrane blebbing, nuclear shrinking, and DNA fragmentation. Other forms of PCD do not involve caspase activation and may be the end-result of prolonged autophagy. Regardless of the PCD pathway, dying cells need to be removed. In adults, the immune cells perform this function, while in embryos, where the immune system has not yet developed, removal occurs by an alternative mechanism. This mechanism involves neighboring cells (called "non-professional phagocytes") taking on a phagocytic role-they recognize the ''eat me'' signal on the surface of the dying cell and engulf it8-10. After engulfment, the debris is brought to the lysosome for degradation. Thus regardless of PCD mechanism, an increase in lysosomal activity can be correlated with increased cell death.To study PCD, a simple assay to visualize lysosomes in thick tissues and multilayer differentiating cultures can be useful. LysoTracker dye is a highly soluble small molecule that is retained in acidic subcellular compartments such as the lysosome11-13. The dye is taken up by diffusion and through the circulation. Since penetration is not a hindrance, visualization of PCD in thick tissues and multi-layer cultures is possible12,13. In contrast, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) analysis14, is limited to small samples, histological sections, and monolayer cultures because the procedure requires the entry/permeability of a terminal transferase.In contrast to Aniline blue, which diffuses and is dissolved by solvents, LysoTracker Red DND-99 is fixable, bright, and stable. Staining can be visualized with standard fluorescent or confocal microscopy in whole-mount or section using aqueous or solvent-based mounting media12,13. Here we describe protocols using this dye to look at PCD in normal and sonichedgehog null mouse embryos. In addition, we demonstrate analysis of PCD in differentiating ES cell cultures and present a simple quantification method. In summary, LysoTracker staining can be a great complement to other methods of detecting PCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号